Opendata, web and dolomites


Combinatorial and geometric methods in representation theory

Total Cost €


EC-Contrib. €






Project "COMBGEOREP" data sheet

The following table provides information about the project.


Organization address
address: BAILRIGG
postcode: LA1 4YW

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-09-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LANCASTER UK (LANCASTER) coordinator 212˙933.00


 Project objective

Representation theory is the study of complex algebraic structures such as groups and rings via their actions on simpler algebraic structures, such as vector spaces. The naturality of this idea of studying complex problems by ‘linearisation’ means that representation theory has strong interactions with many areas of mathematics. This project lies in the area of representation theory of algebras and homological algebra. The overall goal is to develop homological and geometric methods to study representations of algebras creating links with combinatorics, group representation theory, algebraic and symplectic geometry. The principal research objectives are: 1) Use the geometry of Riemann surfaces to study skewed-gentle algebras and their tau-tilting theory. 2) Develop cluster-theoretic techniques in negative Calabi-Yau (CY) triangulated categories by: a) constructing negative CY cluster categories; b) developing the theory of simple-minded systems in stable module categories. The geometry of surfaces provides equivalences between derived categories of gentle algebras and Fukaya categories in symplectic and algebraic geometry. The extension of these methods to skewed-gentle algebras should significantly broaden the scope of this interaction between algebra and geometry. The theory of negative CY categories is considerably underdeveloped despite their occurrence in important contexts such as stable module categories in group representation theory. Cluster theory provides powerful combinatorial methods for positive CY categories which initial work by Coelho Simões suggests is amenable to development in the negative CY setting. The project will be carried out by Raquel Coelho Simões under the supervision of Jan Grabowski at Lancaster University. It will serve to establish Coelho Simões as a research leader in her field through work in a highly active research area at an institution sitting in a broad network of universities with major strength in the field.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COMBGEOREP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COMBGEOREP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NeuroSens (2019)

Neuromodulation of Sensory Processing

Read More  

EPIC (2019)

Evolution of Planktonic Gastropod Calcification

Read More  

COLEX (2019)

Coopetition and Legislation in the Spanish Netherlands (1598-1665)

Read More