Opendata, web and dolomites

DAMAGE SIGNED

seismic off-fault Deformation: A multi-scale iMAGing to constrain Earthquake energy budget

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DAMAGE project word cloud

Explore the words cloud of the DAMAGE project. It provides you a very rough idea of what is the project "DAMAGE" about.

newly    nucleate    egrave    microstructural    coseismic    represented    university    experiments    active    earth    deformation    societal    terminate    manchester    off    ruptures    vast    structural    zones    strategy    core    economic    earthquake    huge    vicinity    observations    striking    petrophysical    performed    geophysical    independent    sinks    natural    tackles    scientific    supervisors    whereas    structure    experimental    dissipated    combining    seismological    tests    earthquakes    secondment    hosted    seismicity    seismic    catastrophic    theoretical    professional    geo    carbonates    innovative    surface    successful    relations    strain    heat    carbonate    physical    energy    scaling    universit    extensive    characterization    tensile    interdisciplinary    dynamic    systematically    faults    progress    seismogenic    overlooked    amount    grow    waves    researcher    fault    compressive    friction    datasets    deadliest    generation    remaining    conceived    mechanical    mechanisms    arguments    damage    grenoble    exhumed    demonstrated    alpes    hazards    destructive    release    loading    quantify    generally    multiscale    guarantee    origin    rocks    wealth    rock    world    causing   

Project "DAMAGE" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE GRENOBLE ALPES 

There are not information about this coordinator. Please contact Fabio for more information, thanks.

 Coordinator Country France [FR]
 Total cost 184˙707 €
 EC max contribution 184˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-13   to  2022-01-12

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE GRENOBLE ALPES FR (GRENOBLE) coordinator 184˙707.00
2    UNIVERSITE GRENOBLE ALPES FR (SAINT MARTIN D'HERES) coordinator 0.00

Map

 Project objective

Earthquakes are one of the deadliest geo-hazards in the world causing huge societal and economic impact. Destructive earthquakes are generally represented by ruptures which nucleate, grow and terminate along pre-existing faults with catastrophic strain energy release. Seismological observations and theoretical arguments demonstrated that most of earthquake energy is dissipated into heat by friction within the core of faults at depth. The remaining energy amount is the one driven to the Earth surface by seismic waves and associated to the generation of extensive DAMAGE in the vicinity of seismic faults. Vast research was recently performed to investigate on-fault mechanisms during earthquakes whereas much less has been done to constrain the physical processes and energy sinks associated to coseismic off-fault deformation. I propose here to systematically study off-fault coseismic damage in carbonates, which are the rocks where most of the destructive seismicity striking Europe is hosted. The proposed research is innovative since it tackles a scientific topic which was so far overlooked with a multiscale interdisciplinary approach combining: detailed field structural and geophysical characterization of exhumed active fault zones, compressive and tensile dynamic loading tests on carbonate rocks, and microstructural-petrophysical characterization of natural and experimental fault rocks. This integrated strategy will lead to build a wealth of novel datasets to quantify the damage structure and scaling relations of seismogenic fault zones in carbonates. Newly conceived rock deformation experiments will then help to determine the mechanical origin of coseismic damage in carbonates. The research will be conducted at Universitè Grenoble-Alpes with a secondment at University of Manchester. The experience of the supervisors and the equipment at both organizations will guarantee the successful progress of the research and my professional growth as independent researcher.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DAMAGE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DAMAGE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More