Opendata, web and dolomites

DAMAGE SIGNED

seismic off-fault Deformation: A multi-scale iMAGing to constrain Earthquake energy budget

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DAMAGE project word cloud

Explore the words cloud of the DAMAGE project. It provides you a very rough idea of what is the project "DAMAGE" about.

world    combining    amount    scaling    quantify    performed    strategy    core    heat    observations    mechanisms    characterization    grow    release    guarantee    arguments    geo    deformation    seismicity    scientific    tests    loading    tensile    energy    earthquake    destructive    fault    faults    generation    huge    manchester    damage    professional    seismological    structural    structure    ruptures    mechanical    secondment    dissipated    supervisors    university    deadliest    carbonates    generally    vicinity    zones    origin    rocks    systematically    nucleate    datasets    universit    successful    coseismic    grenoble    independent    petrophysical    hosted    carbonate    vast    theoretical    surface    compressive    newly    geophysical    relations    friction    microstructural    waves    interdisciplinary    researcher    alpes    multiscale    off    physical    societal    represented    conceived    striking    tackles    experiments    earthquakes    economic    progress    demonstrated    remaining    causing    terminate    active    overlooked    catastrophic    dynamic    hazards    earth    seismic    exhumed    innovative    whereas    sinks    egrave    natural    extensive    rock    wealth    strain    seismogenic    experimental   

Project "DAMAGE" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE GRENOBLE ALPES 

There are not information about this coordinator. Please contact Fabio for more information, thanks.

 Coordinator Country France [FR]
 Total cost 184˙707 €
 EC max contribution 184˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-13   to  2022-01-12

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE GRENOBLE ALPES FR (GRENOBLE) coordinator 184˙707.00
2    UNIVERSITE GRENOBLE ALPES FR (SAINT MARTIN D'HERES) coordinator 0.00

Map

 Project objective

Earthquakes are one of the deadliest geo-hazards in the world causing huge societal and economic impact. Destructive earthquakes are generally represented by ruptures which nucleate, grow and terminate along pre-existing faults with catastrophic strain energy release. Seismological observations and theoretical arguments demonstrated that most of earthquake energy is dissipated into heat by friction within the core of faults at depth. The remaining energy amount is the one driven to the Earth surface by seismic waves and associated to the generation of extensive DAMAGE in the vicinity of seismic faults. Vast research was recently performed to investigate on-fault mechanisms during earthquakes whereas much less has been done to constrain the physical processes and energy sinks associated to coseismic off-fault deformation. I propose here to systematically study off-fault coseismic damage in carbonates, which are the rocks where most of the destructive seismicity striking Europe is hosted. The proposed research is innovative since it tackles a scientific topic which was so far overlooked with a multiscale interdisciplinary approach combining: detailed field structural and geophysical characterization of exhumed active fault zones, compressive and tensile dynamic loading tests on carbonate rocks, and microstructural-petrophysical characterization of natural and experimental fault rocks. This integrated strategy will lead to build a wealth of novel datasets to quantify the damage structure and scaling relations of seismogenic fault zones in carbonates. Newly conceived rock deformation experiments will then help to determine the mechanical origin of coseismic damage in carbonates. The research will be conducted at Universitè Grenoble-Alpes with a secondment at University of Manchester. The experience of the supervisors and the equipment at both organizations will guarantee the successful progress of the research and my professional growth as independent researcher.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DAMAGE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DAMAGE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MultiSeaSpace (2019)

Developing a unified spatial modelling strategy that accounts for interactions between species at different marine trophic levels, and different types of survey data.

Read More  

INSPiRE (2018)

The Influence of Information Search on Preference Formation and Choice

Read More  

ACES (2019)

Antarctic Cyclones: Expression in Sea Ice

Read More