Opendata, web and dolomites

DAMAGE SIGNED

seismic off-fault Deformation: A multi-scale iMAGing to constrain Earthquake energy budget

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DAMAGE project word cloud

Explore the words cloud of the DAMAGE project. It provides you a very rough idea of what is the project "DAMAGE" about.

newly    amount    coseismic    seismological    terminate    earth    seismogenic    university    manchester    structure    extensive    ruptures    faults    dynamic    zones    overlooked    remaining    innovative    theoretical    catastrophic    causing    structural    scaling    characterization    quantify    damage    performed    successful    microstructural    mechanisms    societal    alpes    origin    seismic    nucleate    friction    researcher    represented    strategy    waves    earthquake    interdisciplinary    tackles    seismicity    petrophysical    rocks    datasets    tests    surface    exhumed    systematically    deadliest    world    experimental    observations    experiments    mechanical    fault    generation    vast    generally    wealth    scientific    off    demonstrated    geo    multiscale    dissipated    release    combining    striking    earthquakes    physical    compressive    energy    loading    sinks    progress    natural    guarantee    tensile    huge    hazards    hosted    carbonates    strain    professional    economic    supervisors    grow    core    geophysical    arguments    grenoble    destructive    rock    deformation    vicinity    conceived    universit    secondment    independent    relations    heat    active    egrave    carbonate    whereas   

Project "DAMAGE" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE GRENOBLE ALPES 

There are not information about this coordinator. Please contact Fabio for more information, thanks.

 Coordinator Country France [FR]
 Total cost 184˙707 €
 EC max contribution 184˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-13   to  2022-01-12

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE GRENOBLE ALPES FR (GRENOBLE) coordinator 184˙707.00
2    UNIVERSITE GRENOBLE ALPES FR (SAINT MARTIN D'HERES) coordinator 0.00

Map

 Project objective

Earthquakes are one of the deadliest geo-hazards in the world causing huge societal and economic impact. Destructive earthquakes are generally represented by ruptures which nucleate, grow and terminate along pre-existing faults with catastrophic strain energy release. Seismological observations and theoretical arguments demonstrated that most of earthquake energy is dissipated into heat by friction within the core of faults at depth. The remaining energy amount is the one driven to the Earth surface by seismic waves and associated to the generation of extensive DAMAGE in the vicinity of seismic faults. Vast research was recently performed to investigate on-fault mechanisms during earthquakes whereas much less has been done to constrain the physical processes and energy sinks associated to coseismic off-fault deformation. I propose here to systematically study off-fault coseismic damage in carbonates, which are the rocks where most of the destructive seismicity striking Europe is hosted. The proposed research is innovative since it tackles a scientific topic which was so far overlooked with a multiscale interdisciplinary approach combining: detailed field structural and geophysical characterization of exhumed active fault zones, compressive and tensile dynamic loading tests on carbonate rocks, and microstructural-petrophysical characterization of natural and experimental fault rocks. This integrated strategy will lead to build a wealth of novel datasets to quantify the damage structure and scaling relations of seismogenic fault zones in carbonates. Newly conceived rock deformation experiments will then help to determine the mechanical origin of coseismic damage in carbonates. The research will be conducted at Universitè Grenoble-Alpes with a secondment at University of Manchester. The experience of the supervisors and the equipment at both organizations will guarantee the successful progress of the research and my professional growth as independent researcher.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DAMAGE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DAMAGE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

Kidney-Treg (2020)

Characterisation and impact of kidney-resident Tregs in kidney physiology and pathologies

Read More  

GLORIOUS (2019)

Digital Poetry in Today’s Russia: Canonisation and Translation

Read More