Opendata, web and dolomites

SHINEShift SIGNED

Shape-shifting of vesicles induced by artificial tubular networks

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SHINEShift project word cloud

Explore the words cloud of the SHINEShift project. It provides you a very rough idea of what is the project "SHINEShift" about.

bilayer    tubules    photo    skills    progress    stress    shape    vesicles    host    expand    colloidal    compounds    passive    spread    pushing    dr    me    dynamic    consisting    generate    grow    microfluidics    ones    leap    supramolecular    assemblies    msca    poor    relevance    manner    switchable    fuel    training    cell    fellowship    disciplines    transferable    organic    time    environment    horizontal    leadership    synthetic    fueling    transforming    cells    stiff    static    disassemble    synthesis    interdisciplinary    structures    edge    stops    biology    science    forces    techniques    lipid    objects    cutting    artificial    stabilizing    kudernac    peptide    scientific    stimuli    expertise    distinctive    cyclic    microscopy    notable    inside    resisting    preparation    fundamental    chemistry    brings    researcher    material    surrounding    models    cytoskeleton    reversible    responsive    hence    mechanical    made    fluid    competitive    membrane   

Project "SHINEShift" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT TWENTE 

Organization address
address: DRIENERLOLAAN 5
city: ENSCHEDE
postcode: 7522 NB
website: www.utwente.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 187˙572 €
 EC max contribution 187˙572 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-07-01   to  2021-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT TWENTE NL (ENSCHEDE) coordinator 187˙572.00

Map

 Project objective

The most commonly used artificial cell membrane models are vesicles. However, these static structures, consisting of a lipid bilayer surrounding a fluid, are poor in resisting mechanical stress. Enhancing their mechanical properties with a dynamic artificial cytoskeleton will both allow stabilizing their shape and transforming these passive objects into dynamic stimuli-responsive systems. In this MSCA project photo-responsive synthetic supramolecular tubules will be used as an artificial cytoskeleton inside vesicles. My aim is to develop stiff and at the same time responsive tubules based on cyclic peptide design that can grow and generate pushing forces during the fueling step, and disassemble when the fuel stops, both in a fully reversible manner. This cutting edge interdisciplinary project brings together several disciplines in chemistry, i.e. organic synthesis and supramolecular chemistry with colloidal chemistry (and/or microfluidics), and its scientific impact will spread through various fields – from supramolecular chemistry to material science (leap from static vesicles to dynamic ones), and synthetic biology (relevance for future applications in the field of artificial cells). My expertise as experienced researcher in the field of organic synthesis will be applied to the field of dynamic supramolecular systems based on photo-switchable compounds in which the host (Dr. Kudernac) has made notable recent progress. During this training-through-research project I will be able to learn the preparation processes for the vesicles and microscopy techniques that are fundamental for investigating (dynamic) supramolecular assemblies and which will further expand my horizontal skills. In addition, training activities during this fellowship will strongly enhance my leadership and transferable skills. Hence, the Fellowship will allow me to become a distinctive researcher in a highly competitive scientific environment.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SHINESHIFT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SHINESHIFT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

SymCO (2020)

Asymptotic Symmetries: from Concepts to Observations

Read More