Opendata, web and dolomites

METASPINE SIGNED

Comprehensive experimental and computational mechanical characterisation of metastatic vertebrae

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 METASPINE project word cloud

Explore the words cloud of the METASPINE project. It provides you a very rough idea of what is the project "METASPINE" about.

dall    subject    spinal    optimise    microct    simultaneously    situ    experimental    laboratory    reproduced    he    scenarios    ct    first    patients    accurate    specialization    skills    lesions    vertebrae    displacement    metaspine    clinical    experimentally    models    guidelines    lytic    fracture    qualitative    frequent    risk    cancer    profile    instability    model    middle    strain    spine    integrative    mentoring    competence    university    host    training    marco    supervision    oncologists    biomechanics    palanca    dr    surgically    validated    metastatic    organization    mechanical    effect    computational    digital    surgeons    data    tested    understand    sheffield    time    prediction    loading    finite    correlation    defects    bioengineer    fellow    quantitative    volume    metastases    tumour    group    scoring    distributions    bone    combination    expertiments    weaken    simulate    orthopaedic    comprehensively    imaging    size    musculoskeletal    ara    complete    preparation    mechanistic    axial    decide   

Project "METASPINE" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF SHEFFIELD 

Organization address
address: FIRTH COURT WESTERN BANK
city: SHEFFIELD
postcode: S10 2TN
website: www.shef.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF SHEFFIELD UK (SHEFFIELD) coordinator 212˙933.00

Map

 Project objective

Lytic spinal metastases are frequent in cancer patients and can weaken vertebrae, increasing the risk of fracture and leading to spine instability. Qualitative scoring systems are used by oncologists and orthopaedic surgeons to decide if the metastatic vertebrae need to be surgically treated. However these guidelines are not accurate for all those patients with middle-size lesions. An accurate, quantitative and mechanistic computational model would improve the prediction of the risk of fracture in these patients. However, such models need first to be validated against well-controlled expertiments in the laboratory. METASPINE will deliver for the first time a method to comprehensively understand the effect of the properties of bone lesions on the mechanical competence of metastatic vertebrae. In this project, lytic defects will be experimentally reproduced in the vertebrae, which will be tested under multi-axial loading conditions in order to evaluate the effect of the lesions on the displacement and strain fields distributions. A combination of state of the art in situ mechanical testing, microCT imaging and Digital Volume Correlation will be used. Simultaneously, subject specific clinical CT based finite element models of the metastatic vertebrae will be generated, validated against the experimental data, and used to simulate scenarios which cannot be reproduced experimentally. The applicant (Dr Marco Palanca) is a research fellow in the field of experimental spine biomechanics. He will apply his experimental skills to optimise the sample preparation, and mechanical testing. Moreover, the supervision, mentoring, and training provided by the host organization (University of Sheffield, Dr Dall’Ara and Integrative Musculoskeletal Biomechanics group) on imaging and subject-specific finite element modelling will complete his profile as a bioengineer with a specialization in tumour and spine biomechanics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "METASPINE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "METASPINE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TOPOCIRCUS (2019)

Simulations of Topological Phases in Superconducting Circuits

Read More  

ICARUS (2020)

Information Content of locAlisation: fRom classical to qUantum Systems

Read More  

Mel.Photo.Protect (2019)

Unraveling the Photoprotecting Mechanism of Melanin - From a Library of Fragments to Simulation of Spectra and Function

Read More