Opendata, web and dolomites

PhenAnOx SIGNED

New Chemical Synthetic Methods for Reacting Phenols Selectively with Different Molecules and With Itself: Use of Electricity as a Sustainable, Economic and Traceless Reagent.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PhenAnOx project word cloud

Explore the words cloud of the PhenAnOx project. It provides you a very rough idea of what is the project "PhenAnOx" about.

coupling    chemist    he    cheap    waste    oxidizers    industrial    analogues    packages    grids    diarylethers    waldvogel    substrates    compounds    inexpensive    replace    chemistry    additional    electrons    action    easily    amount    obtain    time    holes    dibenzofurans    substances    electrochemistry    siegfried    electron    contributions    certain    phenol    stabilize    professor    intermediates    economic    wll    off    organic    sustainable    cross    laboratory    building    electrical    electro    university    tolerated    earth    blocks    synthesis    humans    bonds    extend    currents    reactivity    syntheses    heteroatom    driving    later    reactions    johannes    synthetic    gutenberg    form    18    forces    made    ways    fluctuating    active    sole    seminal    biologically    reducing    benzoxazoles    ease    inventing    group    implementable    divided    core    expense    reduce    electric    selective    conversion    natural    green    switched    mainz    ecologic    phenols    worldwide    structures    chemical    efforts    electrosynthesis    performing    manner    agents    interestingly    functionalization    concentrate    first   

Project "PhenAnOx" data sheet

The following table provides information about the project.

Coordinator
JOHANNES GUTENBERG-UNIVERSITAT MAINZ 

Organization address
address: SAARSTRASSE 21
city: MAINZ
postcode: 55122
website: www.uni-mainz.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 162˙806 €
 EC max contribution 162˙806 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-03-01   to  2022-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    JOHANNES GUTENBERG-UNIVERSITAT MAINZ DE (MAINZ) coordinator 162˙806.00

Map

 Project objective

Inventing new green and inexpensive synthetic methods for relevant chemical compounds is one of the ways how organic chemist can contribute to the well-being of humans and Earth. One of the most promising chemical method for this is synthetic organic electrochemistry. It can replace chemical reducing agents and oxidizers with sole cheap electrons or electron-holes and, at the same time, reduce both the amount of waste and the expense of chemical synthesis. Syntheses are easily controllable as they can be ‘switched-off’ and they are implementable on a large industrial scale with ease. Interestingly, organic electrosynthesis can be used to stabilize electrical grids as fluctuating electric currents are tolerated in certain reactions.

The aim of this project is to develop new sustainable, selective and economic electro-organic synthetic methods for the functionalization of phenols. Particularly, we will concentrate on our efforts for finding new ways to form C-heteroatom bonds between phenols and different substrates. At first, we will study the conversion of phenols to diarylethers and dibenzofurans that are important building blocks and core structures of natural products and biologically active substances. Later, we will try to extend the reactivity for phenol-analogues as wll. On the next step, we will study the cross-coupling between phenols and benzoxazoles and its analogues. In this way, we also obtain important synthetic intermediates for organic chemistry in a sustainable and ecologic manner. The proposed action is divided in two research and three additional work packages.

The project will be implemented at the Institute of Organic Chemistry of Johannes-Gutenberg-University in Mainz in the research group of Professor Siegfried Waldvogel. He has been one of the driving forces of electro-organic synthesis already for 18 years and made seminal contributions during that time. It is therefore the top laboratory worldwide for performing the proposed action.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PHENANOX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PHENANOX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Mel.Photo.Protect (2019)

Unraveling the Photoprotecting Mechanism of Melanin - From a Library of Fragments to Simulation of Spectra and Function

Read More  

CoCoNat (2019)

Coordination in constrained and natural distributed systems

Read More  

ReSOLeS (2019)

New Reconfigurable Spectrum Optical Fibre Laser Sources

Read More