Opendata, web and dolomites


Insights from within-host dynamics on the coexistence of antibiotic resistant and sensitive pathogens

Total Cost €


EC-Contrib. €






Project "PolyPath" data sheet

The following table provides information about the project.


Organization address
city: PARIS
postcode: 75006
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 184˙707 €
 EC max contribution 184˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-11-01   to  2021-10-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SORBONNE UNIVERSITE FR (PARIS) coordinator 184˙707.00


 Project objective

Understanding and controlling the evolution of antibiotic resistant strains is one of the biggest public health challenges of our time. Despite a vast amount of data gathered and models being developed, coexistence of antibiotic resistant and sensitive genotypes within the same bacterial pathogen is still an unresolved problem. Simple epidemiological models predict the dominance of either of the two strains while more complex models suffer from generality. Using empirical evidence, I set out to resolve this problem by coupling within-host pathogen dynamics and between-host transmission of bacteria. First, stochastically modelling the within-host system I will develop predictions for the rate of resistance emergence and abundance of sensitive and resistant individuals in hosts with or without antibiotic treatment. While resistant bacteria thrive under antibiotic treatment, the sensitive strain has an advantage in invading and colonising untreated hosts. The outcomes help to get a more detailed understanding of the within-host dynamics, e.g. identification of optimal treatment strategies to confine the evolution of antibiotic resistance. Feeding these results into the dynamics on the population level, the between-host level, will result in a within-between-host feedback. Fitting and confronting the model to empirical data on prevalence and resistance emergence in Streptococcus pneuomoniae and Escherichia coli will conclude this project. The mechanistic implementation of the dynamics can immediately be linked to data which is of great importance given the increasing amount of empirical studies in the field of epidemiology. Through the theoretical and applied results, the study will add new insights and predictions in the field of infectious disease evolution and be able to identify factors enabling the stable coexistence of antibiotic resistant and sensitive bacteria.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "POLYPATH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "POLYPATH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More  

BirthControlEnvirons (2019)

Contraception meets the environment: everyday contraceptive practices, politics, and futures in a toxic age

Read More  

FOCUSIS (2020)

Focal volume Control Using Structured Illumination Sources

Read More