Opendata, web and dolomites

ICEDRAGON SIGNED

Modelling of dust formation and chemistry in AGB outflows and disks

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ICEDRAGON project word cloud

Explore the words cloud of the ICEDRAGON project. It provides you a very rough idea of what is the project "ICEDRAGON" about.

close    planets    material    giant    disk    fundamentally    outer    extended    agb    models    seeds    identification    gains    ice    evolution    encoded    revealed    outflow    answers    organic    combines    unknown    stellar    cse    viability    observations    interdisciplinary    dust    inner    physics    composition    refractory    nucleation    connect    lose    gas    sophisticated    launching    delivered    feedback    chemical    respective    limiting    branch    deduce    enrich    reactions    enrichment    planet    solar    generation    therein    protoplanetary    grains    time    expertise    forms    couple    disks    circumstellar    despite    decades    first    model    mechanism    twilight    star    envelope    fresh    gaseous    outflows    layers    grows    secondary    solving    interstellar    forming    thought    host    link    ism    stars    drives    fellow    wind    puzzles    asymptotic    synergy    astrochemical    chemistry    ideal    structure    icedragon    medium   

Project "ICEDRAGON" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LEEDS 

Organization address
address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT
website: www.leeds.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-11-01   to  2022-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 212˙933.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

In their twilight years, solar-like stars in the asymptotic giant branch (AGB) phase enrich the interstellar medium (ISM) with fresh material (gas and dust) for new stars and planets. AGB stars lose their outer layers to the ISM through a stellar outflow or wind, forming an extended circumstellar envelope (CSE). The wind is thought to be dust-driven, with dust grains forming close to the star. State-of-the-art observations have revealed the composition of the inner CSE, allowing the first identification of gas-phase seeds for dust grains, and the presence of disks around AGB stars. Despite major knowledge gains over the past three decades, it is still not fully understood how dust forms, grows, and drives the stellar wind, limiting our understanding of both stellar evolution and the chemical enrichment of the ISM. Moreover, the structure and chemistry of AGB disks is unknown; if similar to protoplanetary disks, second generation planet formation may be possible therein.

Solving these puzzles requires new and sophisticated models that connect dust formation with chemistry and couple gas and dust chemistry throughout the wind and in the disk. With ‘ICE and Dust Reactions in AGB Gaseous Outflows and disks with Nucleation’ (ICEDRAGON), we will develop the first models that link the chemistry throughout the whole CSE and the first chemical model of an AGB disk. The novel models will allow us to study, for the first time, the organic refractory feedback of dust grains delivered to the ISM and the role of dust formation on the gas-phase chemistry throughout the CSE. This is necessary to deduce the physics behind the wind launching mechanism, that is encoded in the observed composition. The AGB disk model will provide the first answers to the viability of secondary planet formation. The synergy between fellow and host is ideal for this astrochemical (and fundamentally interdisciplinary) project, as it combines their respective expertise in chemical modelling.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ICEDRAGON" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ICEDRAGON" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ToMComputations (2019)

How other minds are represented in the human brain: Neural computations underlying Theory of Mind

Read More  

KiT-FIG (2019)

Kidney Transplantation - Functional ImmunoGenomics

Read More  

GENI (2019)

Gender, emotions and national identities: a new perspective on the abortion debates in Italy (1971-1981).

Read More