Opendata, web and dolomites

P-appetite SIGNED

Dissecting how the Drosophila brain regulates behavioral sequences of feeding to ensure protein homeostasis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "P-appetite" data sheet

The following table provides information about the project.

Coordinator
FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD 

Organization address
address: AVENIDA BRASILIA, CENTRO DE INVESTIGACAO DA FUNDACAO CHAMPALIMAUD
city: LISBOA
postcode: 1400-038
website: http://fchampalimaud.org/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Portugal [PT]
 Total cost 159˙815 €
 EC max contribution 159˙815 € (100%)
 Programme 1. H2020-EU.4. (SPREADING EXCELLENCE AND WIDENING PARTICIPATION)
 Code Call H2020-WF-01-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-11-03   to  2021-11-02

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD PT (LISBOA) coordinator 159˙815.00

Map

 Project objective

Balanced intake of nutritional amino acids is a key determinant of fitness across animal phyla including Drosophila, mice and humans. Imbalanced protein intake have severe implications for health, lifespan and fecundity. To maintain protein homeostasis, animals evolved physiological, neuronal and behavioral strategies that secure balanced intake of dietary amino acids. Altogether, these strategies give rise to protein-specific appetite where deficiency of a dietary amino acids subsequently triggers increased consumption of food sources rich in protein.

Drosophila feeding behavior, like many animals including humans, comprises hierarchically-organized behavioral sequences that are tightly regulated by the protein state of the fruit fly. These behavioral sequences include meals that are organized into feeding bursts composed of multiple sips of the food source (the feeding microstructure). It has been shown that deprivation of dietary amino acids specifically modulate the duration of the feeding bursts to trigger compensatory consumption of protein-rich sources. However, the modulatory pathways and neural circuits that ensure protein homeostasis by regulating the feeding microstructure with such specificity remain elusive.

In the proposed project we aim to identify and characterize modulatory pathways and neural circuits controlling protein-specific appetite. To achieve this, we will combine high-resolution behavioral analysis of feeding with unprecedented neurogenetic toolkit of Drosophila to monitor and manipulate activity in defined subsets of neurons. By using anatomical and functional neural-circuit mapping strategies, we will provide a circuit-level explanation for the regulation of behavioral sequences underlying protein-specific appetite.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "P-APPETITE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "P-APPETITE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.4.)

ABA-GrowthBalance (2019)

Growth balance regulation by SnRK1 under ABA-stress conditions

Read More  

LC-FMRI (2019)

Deciphering the effects of locus coeruleus activity on whole-brain dynamics and neurovascular coupling

Read More  

DEEPLEARNRBP (2019)

Using Deep Learning to understand RNA Binding Protein binding characteristics

Read More