Opendata, web and dolomites

CATHDFENS SIGNED

CATHode Development For Enhanced iNterfacial Studies (CATH-DFENS)

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CATHDFENS project word cloud

Explore the words cloud of the CATHDFENS project. It provides you a very rough idea of what is the project "CATHDFENS" about.

improvements    made    experimental    density    scanning    samples    aid    batteries    greatest    scientist    issue    examination    durability    position    films    international    academic    crystal    mobile    researcher    lack    realised    efforts    excellent    opportunity    nanometer    permit    cathode    training    surface    industrial    battery    thin    source    materials    investigative    electrodes    synchrotron    overcome    electrolyte    film    occurring    lithium    limited    undertaking    laboratories    probe    whilst    date    interfacial    provides    roughness    themselves    cathodes    performed    national    cyclability    energy    nm    meet    fabrication    performance    chemistries    prominent    scientifically    geometries    time    techniques    probing    anode    cycled    create    progress    power    interface    collaborators    characterisation    degradation    demands    ion    orientation    sub    ultra    appropriate    scales    operation    lt    location    length    intricate    first    least    permanent    limitations    difficult    model    resolution    complicated    utilising    secure   

Project "CATHDFENS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 269˙857 €
 EC max contribution 269˙857 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-GF
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2020-10-18

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 269˙857.00
2    THE REGENTS OF THE UNIVERSITY OF CALIFORNIA US (OAKLAND CA) partner 0.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Lithium-ion batteries have established themselves as the leading power source for mobile applications, however to meet ever increasing demands in energy density and durability, significant improvements must be realised. Whilst advances in each battery component (anode, electrolyte and cathode) are necessary, the cathode/electrolyte interface remains one of the least understood and least investigated aspects of battery design and thus provides one of the greatest opportunities to improve performance. This interface is the known location of battery degradation processes occurring at the nanometer level, however the use of appropriate investigative techniques to probe these length-scales is made difficult by complicated cathode chemistries and intricate surface geometries. Whilst there have been efforts to create ultra-low roughness (<1 nm) model experimental systems to investigate this scientifically important issue, there has been a lack in progress as to date; these samples have not been directly comparable with real battery systems with limited (or no) cyclability. The work performed in this proposal will overcome these limitations for the first time, utilising novel thin film fabrication techniques to create low surface roughness, thin film cathodes with defined crystal orientation. These films can be cycled in the same way as real electrodes meaning this important work will permit examination of cathode materials by novel scanning probe and synchrotron interfacial characterisation techniques developed at US National Laboratories for the first time. These methods are capable of probing interfacial processes occurring during battery operation with sub-nanometer resolution. The proposed undertaking represents an excellent training opportunity for the researcher; creating strong international academic collaborators and industrial partners which will aid in making him into a prominent European scientist, enabling him to secure a permanent academic position.

 Publications

year authors and title journal last update
List of publications.
2017 Rohit Satish, Kipil Lim, Nicolas Bucher, Steffen Hartung, Vanchiappan Aravindan, Joseph Franklin, Jun-Sik Lee, Michael F. Toney, Srinivasan Madhavi
Exploring the influence of iron substitution in lithium rich layered oxides Li 2 Ru 1−x Fe x O 3 : triggering the anionic redox reaction
published pages: 14387-14396, ISSN: 2050-7488, DOI: 10.1039/c7ta04194b
Journal of Materials Chemistry A 5/27 2019-12-16
2018 Sean Lubner, Sumanjeet Kaur, Joseph Franklin, Ravi Prasher
PHONON TRANSPORT AT THE NANOSCALE WITH APPLICATIONS TO BATTERIES AND ADVANCED THERMAL INSULATION
published pages: 5919-5927, ISSN: , DOI: 10.1615/ihtc16.mpe.021085
International Heat Transfer Conference 16 2019-12-16
2018 Xiao Chen, Márton Vörös, Juan C. Garcia, Tim T. Fister, D. Bruce Buchholz, Joseph Franklin, Yingge Du, Timothy C. Droubay, Zhenxing Feng, Hakim Iddir, Larry A. Curtiss, Michael J. Bedzyk, Paul Fenter
Strain-Driven Mn-Reorganization in Overlithiated LixMn2O4 Epitaxial Thin-Film Electrodes
published pages: 2526-2535, ISSN: 2574-0962, DOI:
ACS Applied Energy Materials ACS Appl. Energy Mater. 2018, 1 2019-12-16

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CATHDFENS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CATHDFENS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

EpiSeq (2019)

Single molecule sequencing and biophysical properties of oxidized genomic DNA using magnetic tweezers.

Read More  

TeamUp (2020)

Understanding and improving team decision making in uncertain environments

Read More