Opendata, web and dolomites


Plug-n-Play Tool-kit of Organ-on-Chips

Total Cost €


EC-Contrib. €






Project "PTOoC" data sheet

The following table provides information about the project.


Organization address
city: PARIS
postcode: 75011

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 196˙707 €
 EC max contribution 196˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-SE
 Starting year 2019
 Duration (year-month-day) from 2019-10-11   to  2021-10-10


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ELVESYS FR (PARIS) coordinator 196˙707.00


 Project objective

Off late, there has been a tremendous surge in the cost of bringing new drugs to the market. The rising costs and ethical concerns related to screening with animal models have led to the development of alternate approaches for drug discovery. Owing to the advantages of high physiological relevance and predictive value, Micro-physiological systems (MPSs) (also referred to as Organ-on-chips (OoC)) are gradually taking over as powerful and cost-effective alternative to animal model-based drug screening. However, OoCs have yet to cross certain key barriers, before they are adopted as an industry standard for drug screening. The current state-of-the-art in OoCs suffer from a low standardization level, low throughput workflow, in comparison to conventional cell culture-based methods. The main objective of the project is to design and develop a library of inter-lockable hard-soft hybrid components, which can be used to construct any given organ-on-chip at the required physiological/functional scale. Each part of the library would serve to enable a certain physicochemical stimulus/structure warranting its use in the design of a specific type of organ-on-chip. The overall library would contain all the required parts to enable implementation of different microenvironments from different organs of the human body. The development of such parts would enable a standardized approach to OoC development and testing across the industry. The project will have a preliminary focus on demonstrating the proof-of-concept for assembling a lung-on-chip OoC from the developed modular components. Followed by integration of different organ-on-chips with functional scaling and parallelization for high-throughput. The project has a strong multi-disciplinary nature with expertise involved from fields of engineering/mechanical design, microfluidics, biological cell culture/microbiology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PTOOC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PTOOC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

The Damned (2020)

Algeria, antifascism, and Third Worldism: An anticolonial genealogy of the Western European New Left (Algeria, France, Italy, 1957-1975)

Read More  

NeoPur (2019)

New treatments and novel diagnostic tests for neonatal seizures based on purinergic signaling.

Read More  


The missing pillar. European social policy and Eurosceptic challenges (SOCIALEU)

Read More