Opendata, web and dolomites

RHIZOCARBON SIGNED

Forest belowground carbon transport: From rhizosphere fluxes to physiological drivers

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RHIZOCARBON project word cloud

Explore the words cloud of the RHIZOCARBON project. It provides you a very rough idea of what is the project "RHIZOCARBON" about.

complemented    vivo    central    cycling    shedding    serve    fluctuations    flow    amounts    transport    transfer    canopies    rhizosphere    scales    disparity    changing    poor    bear    calculation    investigation    balance    discovery    exudation    extensively    aboveground    predictions    soil    artificial    computational    dive    questions    eco    regional    trace    13co2    expedition    exploration    belowground    flux    medium    storage    models    root    house    fungal    fluxes    hence    line    carbon    dynamics    biogeochemistry    experiments    mycorrhizal    organism    answering    tree    network    concerning    respiration    rate    allocation    methodology    buffer    site    regulate    reserves    indicates    upscaled    decipher    combined    mature    global    forests    greenhouse    ground    routes    continuous    mostly    physiology    climate    fungi    water    accommodates    forest    supply    overlooked    evolutionary    inter    unprecedented    light    simulating    demand    below    trees    inspired    communities    networks    mixed    first    prompted   

Project "RHIZOCARBON" data sheet

The following table provides information about the project.

Coordinator
WEIZMANN INSTITUTE OF SCIENCE 

Organization address
address: HERZL STREET 234
city: REHOVOT
postcode: 7610001
website: www.weizmann.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2024-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) coordinator 1˙500˙000.00

Map

 Project objective

Trees are unique in that responses at the organism level, being upscaled to forest canopies, bear large effects on the cycling and distribution of water and carbon in regional and global scales. Hence, tree carbon allocation dynamics are central not only to tree eco-physiology but also to global biogeochemistry. While tree aboveground carbon fluxes have been extensively studied, belowground fluxes, such as root respiration, growth and exudation have been mostly overlooked due to poor access to the root system. This project is set to address this knowledge disparity by answering key questions concerning belowground carbon flow. In one line of research, we will study the trees' “in-house” management of carbon flow, inspired by our recently achieved first comprehensive tree carbon balance calculation, which indicates that carbon reserves serve as a buffer that accommodates large fluctuations in carbon supply and demand. This will be complemented by an exploration of the inter-tree carbon supply network of mycorrhizal fungi routes, an investigation prompted by our discovery that mature trees in a mixed forest transfer unprecedented amounts of carbon among each other via fungal networks. Computational models will be applied to identify the evolutionary requirements for the development of belowground carbon transfer in a mycorrhizal network. We will dive into the highly complex soil system not in an artificial medium system – but in a mixed forest site, complemented by greenhouse experiments simulating forest tree communities. To trace below-ground carbon transport, we will apply our novel methodology of continuous, in vivo, combined measurement of 13CO2 carbon allocation and flux rate. This novel ‘rhizosphere expedition’ will decipher the key belowground carbon transport processes, shedding light on the extent to which trees and fungi regulate them and facilitating predictions of carbon storage in changing climate and forests.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RHIZOCARBON" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RHIZOCARBON" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

BABE (2018)

Why is the world green: testing top-down control of plant-herbivore food webs by experiments with birds, bats and ants

Read More  

MiniEmbryoBlueprint (2019)

The mammalian body plan blueprint, an in vitro approach

Read More  

EnTER (2020)

Enhanced Mass Transport in Electrochemical Systems for Renewable Fuels and Clean Water

Read More