Opendata, web and dolomites

SUNCOAT SIGNED

Protecting wind-turbine leading edges with nanoengineered superhydrophobic urethane coatings

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SUNCOAT project word cloud

Explore the words cloud of the SUNCOAT project. It provides you a very rough idea of what is the project "SUNCOAT" about.

introducing    seawater    meeting    ice    coatings    treatment    radiation    expense    contaminants    nicedrops    solution    renewables    lifetime    formulation    farms    vital    deploy    combine    cover    sustainability    turbine    suncoat    accretion    grant    size    goals    exacerbating    critical    fluctuations    free    efficiency    exceptional    surface    turbines    voc    hammering    battered    pi    industry    water    energy    superhydrophobicity    flexible    edges    manufacture    materials    dirt    maintenance    susceptible    replacement    solar    erc    nature    command    routine    innovative    breakthrough    blade    meet    factory    offshore    losses    mechanical    progressive    urgently    temperature    flexibility    environment    margins    harsh    published    compromising    solutions    resistance    uv    scalable    plan    producer    cycles    article    formulations    mechanism    serious    tip    impalement    ambition    erosion    blades    speed    security    point    liquid    exposure    nanoengineered    operation    wind    infrastructure    reducing    strategic    robustness    splash    rain    paramount    coating   

Project "SUNCOAT" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 0 €
 EC max contribution 150˙000 € (0%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2019
 Duration (year-month-day) from 2019-11-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 150˙000.00

Map

 Project objective

Wind energy is a vital component in meeting EU’s the Strategic Energy Technology (SET) plan and Europe’s ambition to become number one producer of renewables. Reducing operation and maintenance (O&M) costs are of paramount importance. The most serious problem affecting the wind industry is water erosion of the turbine blades. The blade leading edges are most susceptible, particularly in offshore turbines that are often battered by the water hammering mechanism of rain and seawater splash impact, exposure to the solar (UV) radiation and harsh fluctuations in temperature which lead to accretion of dirt, contaminants and ice. Progressive increase in the size of the blades has increased tip-speed of the blades exacerbating these erosion issues and increasing O&M costs for wind farms. Therefore, robust and environment friendly surface treatment solutions are urgently required to solve this most significant problem in an industry critical for Europe to meet its energy security and sustainability goals.

Through PI’s ERC Grant (NICEDROPS), a robust and flexible nanoengineered coating formulation was developed. These coatings are applied through scalable approaches. They combine flexibility and superhydrophobicity to achieve exceptional liquid impalement resistance without compromising the mechanical robustness; the breakthrough published as a cover article in Nature Materials. In SUNCOAT we will advance this by one more crucial step – by introducing water based coatings formulations, to make our solution environment friendly and VOC-free. The technology is an innovative solution to the wind energy industry’s number one problem and it can deploy on existing infrastructure during routine maintenance cycles as well as in-factory at point of manufacture. Given the expense of blade replacement, and lifetime costs of efficiency losses, this is a product that can command significant margins while still offering a cost-effective solution to the industry.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SUNCOAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SUNCOAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More