Opendata, web and dolomites

SUNCOAT SIGNED

Protecting wind-turbine leading edges with nanoengineered superhydrophobic urethane coatings

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SUNCOAT project word cloud

Explore the words cloud of the SUNCOAT project. It provides you a very rough idea of what is the project "SUNCOAT" about.

scalable    rain    mechanism    superhydrophobicity    blade    meeting    margins    cycles    solar    resistance    splash    seawater    battered    speed    contaminants    dirt    mechanical    susceptible    fluctuations    voc    lifetime    wind    breakthrough    point    turbine    solution    operation    formulations    deploy    coating    liquid    maintenance    security    exacerbating    blades    flexibility    losses    offshore    uv    treatment    radiation    free    energy    size    meet    accretion    expense    renewables    command    edges    impalement    infrastructure    introducing    industry    routine    plan    published    hammering    flexible    solutions    erc    suncoat    exceptional    serious    compromising    temperature    nicedrops    environment    reducing    vital    manufacture    exposure    efficiency    cover    coatings    strategic    formulation    grant    critical    tip    surface    turbines    paramount    progressive    materials    replacement    innovative    nature    producer    ice    erosion    farms    robustness    goals    factory    combine    ambition    pi    urgently    nanoengineered    water    article    sustainability    harsh   

Project "SUNCOAT" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 0 €
 EC max contribution 150˙000 € (0%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2019
 Duration (year-month-day) from 2019-11-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 150˙000.00

Map

 Project objective

Wind energy is a vital component in meeting EU’s the Strategic Energy Technology (SET) plan and Europe’s ambition to become number one producer of renewables. Reducing operation and maintenance (O&M) costs are of paramount importance. The most serious problem affecting the wind industry is water erosion of the turbine blades. The blade leading edges are most susceptible, particularly in offshore turbines that are often battered by the water hammering mechanism of rain and seawater splash impact, exposure to the solar (UV) radiation and harsh fluctuations in temperature which lead to accretion of dirt, contaminants and ice. Progressive increase in the size of the blades has increased tip-speed of the blades exacerbating these erosion issues and increasing O&M costs for wind farms. Therefore, robust and environment friendly surface treatment solutions are urgently required to solve this most significant problem in an industry critical for Europe to meet its energy security and sustainability goals.

Through PI’s ERC Grant (NICEDROPS), a robust and flexible nanoengineered coating formulation was developed. These coatings are applied through scalable approaches. They combine flexibility and superhydrophobicity to achieve exceptional liquid impalement resistance without compromising the mechanical robustness; the breakthrough published as a cover article in Nature Materials. In SUNCOAT we will advance this by one more crucial step – by introducing water based coatings formulations, to make our solution environment friendly and VOC-free. The technology is an innovative solution to the wind energy industry’s number one problem and it can deploy on existing infrastructure during routine maintenance cycles as well as in-factory at point of manufacture. Given the expense of blade replacement, and lifetime costs of efficiency losses, this is a product that can command significant margins while still offering a cost-effective solution to the industry.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SUNCOAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SUNCOAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More