Opendata, web and dolomites

RandomMultiScales SIGNED

Computational Random Multiscale Problems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RandomMultiScales project word cloud

Explore the words cloud of the RandomMultiScales project. It provides you a very rough idea of what is the project "RandomMultiScales" about.

bayesian    ranging    astonishing    numerical    adaptive    links    anderson    disorder    randomness    fundamental    paradigm    quantification    periodicity    fashion    domain    separable    partial    invisibility    quantum    dimensional    space    interpretation    continuum    stochastic    direct    unrelated    physical    metamaterials    deterministic    statistically    probabilistic    games    physics    breakthroughs    computational    numerics    seemingly    deep    waves    theories    contrast    orders    attempt    multiple    interplay    computing    easily    experimental    random    multiscale    transitions    underlying    simulation    clears    accounts    magnitude    observation    intersection    scattering    exceeds    separation    scales    decomposition    ergodicity    truly    phenomena    disordered    stationarity    microstructures    differential    goals    models    equations    media    envisioned    hierarchical    surprising    algorithmic    modeling    mathematical    base    resolve    prediction    localization    heterogeneous    hence    connected    nexus    geometrically    generation    cloaking    homogenization   

Project "RandomMultiScales" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET AUGSBURG 

Organization address
address: UNIVERSITAETSSTRASSE 2
city: AUGSBURG
postcode: 86159
website: www.uni-augsburg.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙796˙926 €
 EC max contribution 1˙796˙926 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-05-01   to  2025-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET AUGSBURG DE (AUGSBURG) coordinator 1˙796˙926.00

Map

 Project objective

Geometrically or statistically heterogeneous microstructures and high physical contrast are the key to astonishing physical phenomena such as invisibility cloaking with metamaterials or the localization of quantum waves in disordered media. Due to the complex experimental observation of such processes, numerical simulation has very high potential for their understanding and control. However, the underlying mathematical models of random partial differential equations are characterized by a complex interplay of effects on many non-separable or even a continuum of characteristic scales. The attempt to resolve them in a direct numerical simulation easily exceeds today's computing resources by multiple orders of magnitude. The simulation of physical phenomena from multiscale models, hence, requires a new generation of computational multiscale methods that accounts for randomness and disorder in a hierarchical and adaptive fashion.

This proposal concerns the design and numerical analysis of such methods. The main goals are connected to fundamental mathematical and algorithmic challenges at the intersection of multiscale modeling and simulation, uncertainty quantification and computational physics:

(A) Numerical stochastic homogenization beyond stationarity and ergodicity, (B) Uncertainty quantification in truly high-dimensional parameter space, (C) Computational multiscale scattering in random heterogeneous media, (D) Numerical prediction of Anderson localization and quantum phase transitions.

These objectives base upon recent breakthroughs of deterministic numerical homogenization beyond periodicity and scale separation and its deep links to seemingly unrelated theories ranging all the way from domain decomposition to information games and their Bayesian interpretation. It is this surprising nexus of classical and probabilistic numerics that clears the way to the envisioned new computational paradigm for multiscale problems at randomness and disorder.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RANDOMMULTISCALES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RANDOMMULTISCALES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More  

HBPTC (2019)

Hydrogen Bonding Phase Transfer Catalysis

Read More  

EASY-IPS (2019)

a rapid and efficient method for generation of iPSC

Read More