Opendata, web and dolomites

Fluodamage SIGNED

Fluorescent Molecules to see when and where Molecules Break during Mechanical Fatigue

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Fluodamage project word cloud

Explore the words cloud of the Fluodamage project. It provides you a very rough idea of what is the project "Fluodamage" about.

mechanical    localize    breakage    elastomers    thicker    accident    solutions    rays    load    lightweight    engineering    parts    molecular    fluorescent    cyclic    localizes    ray    evolution    ultrasounds    designed    refine    incorporate    bearing    stage    strategies    ultrasound    nm    metals    extensibility    destructive    visualization    technique    replace    preventing    causing    catastrophic    methodology    scission    expand    material    quantify    techniques    lighter    image    polymeric    tagging    force    precisely    monitoring    variety    detect    lifetime    chemech    money    bond    maintenance    break    poor    failures    quantification    fluorophores    erc    smaller    progressive    materials    impossible    potentially    prediction    detecting    becomes    rubber    ceramics    time    spots    brittle    replacement    bulk    although    degradation    accurately    detects    model    occurring    framework    individual    damage    probes    covalent    schedule    saving    catastrophically    flexibility   

Project "Fluodamage" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 0 €
 EC max contribution 150˙000 € (0%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 150˙000.00

Map

 Project objective

Although elastomers are widely used in load-bearing engineering applications where lightweight and flexibility is essential, they are typically designed thicker than they need to be, due to a poor prediction of their lifetime in use. The loss of flexibility and extensibility results from individual covalent bond scission in the bulk of the material. When the extent of bond scission increases or localizes in specific spots, the rubber becomes brittle and can break catastrophically, potentially causing an accident. Detecting the early stage progressive molecular scale damage during use is impossible with current techniques using ultrasounds or X-rays. Within the framework of the ERC project CHEMECH we have precisely developed a method to detect, image and quantify bond breakage. This technique is based on tagging model materials with molecular probes (i.e., fluorophores) that become fluorescent when they break in response to a mechanical force. The goal of the current proposal is to incorporate the fluorophores in a variety of elastomers and to develop a novel methodology for non-destructive visualization and quantification of early damage by bond scission occurring in elastomers during cyclic mechanical testing. Compared to existing ultrasound and X-ray solutions, our technology detects degradation occurring at a much smaller scale (10 nm), can localize the damage more precisely and is non-destructive allowing the monitoring of the damage evolution in time. This information can then be used to refine the prediction of lifetime to design parts lighter and with less material, to schedule maintenance and part replacement more accurately, preventing catastrophic failures while saving time and money and finally to find new materials design strategies and expand the use of lightweight polymeric materials into new applications where they could replace metals or ceramics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FLUODAMAGE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FLUODAMAGE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

QLite (2019)

Quantum Light Enterprise

Read More  

QUAMAP (2019)

Quasiconformal Methods in Analysis and Applications

Read More