Opendata, web and dolomites


Understanding and manipulating the dynamics of chromosome topologies in transcriptional control

Total Cost €


EC-Contrib. €






 CHROMTOPOLOGY project word cloud

Explore the words cloud of the CHROMTOPOLOGY project. It provides you a very rough idea of what is the project "CHROMTOPOLOGY" about.

distal    de    architectures    screens    influence    discretely    kinetics    unknown    genes    regulates    enhancers    genetic    novo    regions    topologically    super    ins    topology    exists    interactions    engineered    transcriptional    combination    gene    accessible    organize    chromatin    packaged    organization    groundbreaking    status    time    understand    loci    anticipate    engineer    altered    regulation    paradigm    denoted    repair    interplay    correlate    imaging    trans    shown    regulatory    resolution    tightly    tagging    accompanying    questions    variabilities    textbook    dna    environment    tads    sequences    modifications    seem    folded    configurations    correlation    give    crispr    histone    knock    sized    development    tad    striking    contact    expression    anchor    metazoan    folding    nuclei    loops    epigenetic    consequence    direct    hi    cell    regulated    acting    genome    eukaryotic    megabase    view    technologies    single    replication    transcription    chromosome    genomes    domains    underlying    function    optogenetics    fundamental    cells   

Project "CHROMTOPOLOGY" data sheet

The following table provides information about the project.


Organization address
address: Rue Laurent Fries 1
postcode: 67404

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Project website
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-06-01   to  2021-05-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Transcriptional regulation of genes in eukaryotic cells requires a complex and highly regulated interplay of chromatin environment, epigenetic status of target sequences and several different transcription factors. Eukaryotic genomes are tightly packaged within nuclei, yet must be accessible for transcription, replication and repair. A striking correlation exists between chromatin topology and underlying gene activity. According to the textbook view, chromatin loops bring genes into direct contact with distal regulatory elements, such as enhancers. Moreover, we and others have shown that genomes are organized into discretely folded megabase-sized regions, denoted as topologically associated domains (TADs), which seem to correlate well with transcription activity and histone modifications. However, it is unknown whether chromosome folding is a cause or consequence of underlying gene function. To better understand the role of genome organization in transcription regulation, I will address the following questions:

(i) How are chromatin configurations altered during transcriptional changes accompanying development? (ii) What are the real-time kinetics and cell-to-cell variabilities of chromatin interactions and TAD architectures? (iii) Can chromatin loops be engineered de novo, and do they influence gene expression? (iv) What genetic elements and trans-acting factors are required to organize TADs?

To address these fundamental questions, I will use a combination of novel technologies and approaches, such as Hi-C, CRISPR knock-ins, ANCHOR tagging of DNA loci, high- and super-resolution single-cell imaging, genome-wide screens and optogenetics, in order to both study and engineer chromatin architectures. These studies will give groundbreaking insight into if and how chromatin topology regulates transcription. Thus, I anticipate that the results of this project will have a major impact on the field and will lead to a new paradigm for metazoan transcription control.


year authors and title journal last update
List of publications.
2020 Yousra Ben Zouari, Angeliki Platania, Anne M. Molitor, Tom Sexton
4See: A Flexible Browser to Explore 4C Data
published pages: , ISSN: 1664-8021, DOI: 10.3389/fgene.2019.01372
Frontiers in Genetics 10 2020-03-11
2019 Yousra Ben Zouari, Anne M. Molitor, Natalia Sikorska, Vera Pancaldi, Tom Sexton
ChiCMaxima: a robust and simple pipeline for detection and visualization of chromatin looping in Capture Hi-C
published pages: , ISSN: 1474-760X, DOI: 10.1186/s13059-019-1706-3
Genome Biology 20/1 2019-08-30

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHROMTOPOLOGY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHROMTOPOLOGY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MOCHA (2019)

Understanding and leveraging ‘moments of change’ for pro-environmental behaviour shifts

Read More  

HelixMold (2019)

Computational design of novel functions in helical proteins by deviating from ideal geometries

Read More  

Agglomerates (2019)

Infinite Protein Self-Assembly in Health and Disease

Read More