Explore the words cloud of the symESTIM project. It provides you a very rough idea of what is the project "symESTIM" about.
The following table provides information about the project.
Coordinator |
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Organization address contact info |
Coordinator Country | Switzerland [CH] |
Total cost | 191˙149 € |
EC max contribution | 191˙149 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2019 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2020 |
Duration (year-month-day) | from 2020-03-01 to 2022-02-28 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE | CH (LAUSANNE) | coordinator | 191˙149.00 |
Severe spinal cord injury (SCI) interrupts descending sympatho-excitatory axons responsible for cardiovascular control. Devoid of supraspinal input, sympathetic circuits within the spinal cord undergo significant plastic changes. These changes lead to a debilitating clinical scenario that includes frequent bouts of hypertension (autonomic dysreflexia) and orthostatic hypotension, conditions which have extremely limited treatment options and lead to increased risk for cardiovascular disease. Here, I propose to deconstruct the sympathetic circuitry within the spinal cord in order to develop a targeted electrical neuroprosthesis that prevents the development of these clinical conditions. To dissect the sympathetic circuitry that drives sympathetic dysfunction after SCI, I will deploy judicious associations of optogenetics, chemogenetics, calcium imaging, virus-mediated tract-tracing and whole brain-spinal cord imaging in transgenic rats. For example, the catecholaminergic specificity of TH:Cre rats will enable the visualization of the residual descending sympatho-excitatory axons following severe contusion SCI, and will provide specific access to splanchnic ganglia neurons. This understanding of the sympathetic circuitry will allow me to map the hemodynamic responses following electrical spinal cord stimulation to the modulation of specific circuits and connections. This knowledge will then guide the development of a tailored neuroprosthesis targeting these circuits in order to regulate sympathetic dysfunction after SCI. Finally, I will exploit this neuroprosthesis to rehabilitate the sympathetic system after SCI, which I will demonstrate with longitudinal functional assessments and detailed anatomical evaluations. My ultimate goal is to develop targeted autonomic neurorehabilitation—a novel method to treat autonomic dysfunction after SCI that will improve the quality of life of those suffering from this condition.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SYMESTIM" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SYMESTIM" are provided by the European Opendata Portal: CORDIS opendata.