Opendata, web and dolomites

StressRhomboid SIGNED

Trapping intramembrane protease substrates in living cells: focus on RHBDL4 role in ERAD

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 StressRhomboid project word cloud

Explore the words cloud of the StressRhomboid project. It provides you a very rough idea of what is the project "StressRhomboid" about.

protein    leader    protease    dependent    genetically    gain    trapping    pioneer    family    uaa    chin    substrates    explore    human    rhbdl4    roadblock    spectrometry    pathophysiological    establishing    acids    er    validated    systematic    action    functionally    participates    capture    guiding    discover    discovered    amino    frequently    mechanism    degradation    jason    intramembrane    proteins    unprecedented    collaborate    catalytic    first    erad    experimental    proteolysis    matthew    cleaved    living    linking    covalently    published    pioneered    efficiency    hits    engineer    freeman    serine    substrate    distinguish    reveal    lack    poorly    specificity    exocytosis    contributes    therapeutic    quality    proteases    unnatural    little    apoptosis    lab    conserved    uaas    roles    technique    cambridge    cellular    implicated    mass    discovery    metastasis    rhomboid    group    cross    assay    cancer    encoded    thereby    rhomboids    adapt    cells   

Project "StressRhomboid" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2020
 Duration (year-month-day) from 2020-10-01   to  2022-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 224˙933.00

Map

 Project objective

Intramembrane proteolysis is increasingly understood to control many cellular processes but we still know little about the role of most intramembrane proteases. The major roadblock is the lack of a robust method of protease substrate discovery. In this action, I focus on RHBDL4, a poorly understood but highly conserved member of the rhomboid intramembrane serine protease family, which participates in ER associated degradation (ERAD), apoptosis and exocytosis, and which has been frequently implicated in cancer growth and metastasis.

My three objectives are to establish a systematic approach to trapping and identifying rhomboid substrates; to use this to discover the substrates of human RHBDL4; and to explore the mechanism of how RHBDL4 participates in ER quality control.

Matthew Freeman's group discovered rhomboids and is a leader in the field. I will also collaborate with Jason Chin in Cambridge, who has pioneered the use of genetically encoded unnatural amino acids (UAAs) to engineer proteins. I will adapt a technique recently published by the Chin lab for use in living cells. Using a cross-linking UAA analogue of the catalytic serine in RHBDL4, I will achieve unprecedented specificity and efficiency of substrate capture. I will thus covalently capture RHBDL4 substrates, which will then be identified by mass spectrometry. Hits will be functionally validated and, using a range of experimental conditions, I will distinguish substrates involved in ERAD from substrates cleaved in other RHBDL4-dependent processes.

By establishing the first systematic assay for rhomboid substrates and investigating the role of RHBDL4 in ER quality control, I will pioneer a general approach to intramembrane protease substrate discovery; gain broader understanding of how RHBDL4 contributes to cellular quality control; and finally reveal pathophysiological roles of this human protein, thereby guiding possible future therapeutic targeting.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STRESSRHOMBOID" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STRESSRHOMBOID" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ACES (2019)

Antarctic Cyclones: Expression in Sea Ice

Read More  

POSPORI (2019)

Polymer Optical Sensors for Prolonged Overseeing the Robustness of civil Infrastructures

Read More  

PRISME (2019)

PRogram for ISolation Manufacturing in Europe (PRISME)

Read More