Opendata, web and dolomites

RCC_Evo SIGNED

Modelling the Predictability and Repeatability of Tumour Evolution in Clear Cell Renal Cell Cancer

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RCC_Evo project word cloud

Explore the words cloud of the RCC_Evo project. It provides you a very rough idea of what is the project "RCC_Evo" about.

subtype    targetable    driver    immune    infiltrating    checkpoint    repeated    rising    trajectories    primary    kidney    ccrcc    clear    progression    mutated    region    subsequent    pbrm1    characterised    chromosome    tumours    involvement    evolution    inhibition    xenografts    organoids    personalized    weaknesses    tumour    edited    incidence    patient    unknown    human    mutational    model    pdx    pdos    center    panel    refine    longitudinal    diagnosed    intratumoural    hptc    subtypes    resolution    frequently    proximal    hptcs    tubule    setd2    prediction    models    heterogeneity    identification    cell    mechanisms    experimental    previously    genes    biopsy    clonal    function    vhl    pdo    micro    renal    preliminary    sequencing    co    fibroblasts    bap1    sequence    culture    events    genotype    manipulation    leucocytes    profiling    interim    followed    suggests    passaging    cells    metastatic    tme    cancers    harbours    repeatability    gene    evolutionary    cancer    genotypes    course    predictability    deleted    3p    tracerx    clinical    suppressor    cohort   

Project "RCC_Evo" data sheet

The following table provides information about the project.

Coordinator
THE FRANCIS CRICK INSTITUTE LIMITED 

Organization address
address: 1 MIDLAND ROAD
city: LONDON
postcode: NW1 1AT
website: www.crick.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE FRANCIS CRICK INSTITUTE LIMITED UK (LONDON) coordinator 224˙933.00

Map

 Project objective

Kidney cancer is among the 10 most frequently diagnosed cancers and its incidence is rising. Clear cell Renal Cell Cancer (ccRCC) is the most common subtype and is characterized by early 3p loss. The deleted region on chromosome 3p harbours a number of tumour suppressor genes namely VHL, PBRM1, SETD2 and BAP1, which are frequently mutated subsequent to 3p loss. TRACERx Renal is a multi-center, longitudinal cohort study, which studies tumour evolution and intratumoural heterogeneity through multi-region profiling of primary tumours. Interim findings have defined 7 evolutionary subtypes. I will model the predictability and repeatability of these evolutionary trajectories in patient-derived tumour organoids (PDO), in patient-derived xenografts (PDX), and in gene-edited human proximal tubule cells (HPTC). Preliminary evidence suggests that ccRCC genotypes are associated with specific TME conditions. I will develop PDO models in which I will co-culture tumour cells with tumour infiltrating leucocytes and cancer associated fibroblasts. I will refine the mutational ordering and clonal resolution in selected cases of the TRACERx Renal Study by micro-biopsy profiling. Predictability of evolutionary trajectories will then be addressed through repeated passaging of tumour PDOs followed by targeted panel sequencing. The function of metastatic driver events will be characterised in PDX. The repeatability of the evolutionary trajectories will be studied through experimental manipulation of the genotype sequence in HPTCs. Co-culture PDOs will be used to define response to immune checkpoint inhibition. The results will allow a personalized prediction of the clinical course of ccRCC and the response to immune checkpoint inhibition. I will identify mechanisms of tumour progression and the involvement of the TME. This will result in the identification of previously unknown targetable weaknesses in ccRCC.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RCC_EVO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RCC_EVO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

BIOplasma (2019)

Use flexible Tube Micro Plasma (FµTP) for Lipidomics

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More