NDOGS

"Nuclear Dynamic, Organization and Genome Stability"

 Coordinatore COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙499˙863 €
 EC contributo 1˙499˙863 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101109
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-02-01   -   2017-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

 Organization address address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015

contact info
Titolo: Dr.
Nome: Karine Marie Renée
Cognome: Dubrana
Email: send email
Telefono: +33 1 46548698

FR (PARIS 15) hostInstitution 1˙499˙863.00
2    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

 Organization address address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015

contact info
Titolo: Mr.
Nome: Olivier
Cognome: Leroy
Email: send email
Telefono: 33146549789
Fax: 33146549180

FR (PARIS 15) hostInstitution 1˙499˙863.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

pathways    nuclear    localization    damaged    recently    checkpoint    kinetics    dna    dynamics    genome    activation    cell    position    dsb    dsbs    molecular    compartmentalization    steps    nucleus    chromatin    repair    regulates   

 Obiettivo del progetto (Objective)

'The eukaryotic genome is packaged into large-scale chromatin structures occupying distinct domains in the cell nucleus. Nuclear compartmentalization has recently been proposed to play an important role in genome stability but the molecular steps regulated remain to be defined. Focusing on Double strand breaks (DSBs) in response to which cells activate checkpoint and DNA repair pathways, we propose to characterize the spatial and temporal behavior of damaged chromatin and determine how this affects the maintenance of genome integrity. Currently, most studies concerning DSBs signaling and repair have been realized on asynchronous cell populations, which makes it difficult to precisely define the kinetics of events that occur at the cellular level. We thus propose to follow the nuclear localization and dynamics of an inducible DSB concomitantly with the kinetics of checkpoint activation and DNA repair at a single cell level and along the cell cycle. This will be performed using budding yeast as a model system enabling the combination of genetics, molecular biology and advanced live microscopy. We recently demonstrated that DSBs relocated to the nuclear periphery where they contact nuclear pores. This change in localization possibly regulates the choice of the repair pathway through steps that are controlled by post-translational modifications. This proposal aims at dissecting the molecular pathways defining the position of DSBs in the nucleus by performing genetic and proteomic screens, testing the functional consequence of nuclear position for checkpoint activation and DNA repair by driving the DSB to specific nuclear landmarks and, defining the dynamics of DNA damages in different repair contexts. Our project will identify new players in the DNA repair and checkpoint pathways and further our understanding of how the compartmentalization of damaged chromatin into the nucleus regulates these processes to insure the transmission of a stable genome.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

RATIONALISM (2008)

Rediscovering Theological Rationalism in the Medieval World of Islam

Read More  

MESANDLIN(G)K (2012)

The Linguistic Past of Mesoamerica and the Andes: A search for early migratory relations between North and South America

Read More  

PAGAP (2010)

Periods in Algebraic Geometry and Physics

Read More