CASI-CVD

Stable Unsaturated Silicon Clusters as Nucleation Sites in Solution and the Gas Phase

 Coordinatore UNIVERSITAET DES SAARLANDES 

 Organization address address: CAMPUS
city: SAARBRUECKEN
postcode: 66041

contact info
Titolo: Ms.
Nome: Corinna
Cognome: Hahn
Email: send email
Telefono: +49 681 95923362
Fax: +49 681 95923370

 Nazionalità Coordinatore Germany [DE]
 Totale costo 174˙475 €
 EC contributo 174˙475 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-04-01   -   2014-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAET DES SAARLANDES

 Organization address address: CAMPUS
city: SAARBRUECKEN
postcode: 66041

contact info
Titolo: Ms.
Nome: Corinna
Cognome: Hahn
Email: send email
Telefono: +49 681 95923362
Fax: +49 681 95923370

DE (SAARBRUECKEN) coordinator 174˙475.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

generation    training    electronic    fellow    material    silicon    gas    amorphous    chemistry    si    we    energy    stable    elusive    silanes    deposition    solar    cluster    clusters    compounds    light    materials    unsaturated    cvd    sites    nucleation   

 Obiettivo del progetto (Objective)

'Amorphous silicon (a-Si) is an important industrial material. It is used widely in electronic devices such as thin-film transistors (TFTs). Solar energy generation also relies heavily on a-Si for mass produced photovoltaic cells. Amorphous silicon is prepared via chemical vapour deposition (CVD) from silanes (e.g. SiH4), in which small, unsaturated silicon clusters are short-lived gas-phase intermediates. Significantly, such clusters are incorporated into the bulk a-Si and are critical in determining fundamental properties of the material, such as optical and electronic band-gaps. Crucial details of structure and bonding in these clusters are elusive.

We propose to build on the emerging chemistry of isolable, stable unsaturated silicon clusters. Using a novel systematic synthetic approach, we will prepare stable unsaturated silicon cluster compounds as models for the unsaturated clusters present in CVD processes. We will exploit the reactivity of these compounds to use them as solution-phase nucleation sites for cluster expansion. The electronic and photo-physical characteristics of these compounds will be investigated, shedding light on the analytically elusive clusters present in a-Si.

We will use unsaturated silicon clusters as gas-phase nucleation sites for the CVD of a-Si (Cluster Assisted Silicon CVD - CASi-CVD). By depositing a-Si from gas phase mixtures of silanes and our novel clusters we will be able to control the concentration and properties of the residual unsaturated clusters in the a-Si produced. Improved control over these parameters is directly relevant to industry: it would allow improved materials for semi-conducting electronics and solar-energy generation. Such advances would increase the global competitiveness of the EU.

The fellow will gain high quality training in main group chemistry and materials chemistry (deposition of a-Si) as well as complementary skills training that will equip the fellow for a top level independent research career.'

Introduzione (Teaser)

EU-funded scientists sought to shed further light onto the stable unsaturated silicon clusters that act as precursors for amorphous silicon deposition.

Altri progetti dello stesso programma (FP7-PEOPLE)

ACAR (2011)

Arterial Calcification & Arterial Regeneration ‘ACAR’

Read More  

CORTICAL FOXP2 (2013)

Functional role of Foxp2 and Caspr2 in the cortex

Read More  

MACACA (2010)

Determinants of mandibular form during intra-oral food processing

Read More