BIOPROBE

"VERTICAL MICROFLUIDIC PROBE: A nanoliter ""Swiss army knife"" for chemistry and physics at biological interfaces"

 Coordinatore IBM RESEARCH GMBH 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 1˙488˙600 €
 EC contributo 1˙488˙600 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111109
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-01-01   -   2017-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    IBM RESEARCH GMBH

 Organization address address: SAEUMERSTRASSE 4
city: RUESCHLIKON
postcode: 8803

contact info
Titolo: Dr.
Nome: Govindkrishna Govind
Cognome: Kaigala
Email: send email
Telefono: +41 44 724 8929
Fax: +41 44 724 8965

CH (RUESCHLIKON) hostInstitution 1˙488˙600.00
2    IBM RESEARCH GMBH

 Organization address address: SAEUMERSTRASSE 4
city: RUESCHLIKON
postcode: 8803

contact info
Titolo: Ms.
Nome: Catherine
Cognome: Trachsel
Email: send email
Telefono: +41 44 724 8289
Fax: +41 44 724 8578

CH (RUESCHLIKON) hostInstitution 1˙488˙600.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

life    cells    cell    tissues    liquid    right    vmfp    closed    biointerfaces    biology    surfaces    limited    probe   

 Obiettivo del progetto (Objective)

'Life is fundamentally characterised by order, compartmentalisation and biochemical reactions, which occurs at the right place right time – within, on the surface and between cells. Only a proportion of life processes can be addressed with contemporary approaches like liquid encapsulations (e.g. droplets) or engineering compartments (e.g. scaffolds). I believe these approaches are severely limited. I am convinced that a technique to study, work and locally probe adherent cells & tissues at micrometer distances from cell surfaces in “open space” would represent a major advance for the biology of biointerfaces. I therefore propose a non-contact, scanning technology, which spatially confines nanoliter volumes of chemicals for interacting with cells at the µm-length scale. This technology called the vertical microfluidic probe (vMFP) – that I developed at IBM-Zurich – shapes liquid on surfaces hydrodynamically and is compatible with samples on Petri dishes & microtiter plates. The project is organized in 4 themes:

(1) Advancing the vMFP by understanding the interaction of liquid flows with biointerfaces, integrating functional elements (e.g. heaters/electrodes, cell traps) & precision control. (2) Developing a higher resolution method to stain tissue sections for multiple markers & better quality information. (3) Retrieving rare elements such as circulating tumor cells from biologically diverse libraries. (4) Patterning cells for applications in regenerative medicine.

Since cells & tissues will no longer be limited by closed systems, the vMFP will enable a completely new range of experiments to be performed in a highly interactive, versatile & precise manner – this approach departs from classical “closed” microfluidics. It is very likely that such a tool by providing multifunctional capabilities akin to the proverbial ‘Swiss army knife’ will be a unique facilitator for investigations of previously unapproachable problems in cell biology & the life science.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

DECORE (2008)

Deep Earth Chemistry of the Core

Read More  

PTS4DEEG (2014)

Accurate EEG source localisation using patient tailored head models

Read More  

SINOTYPE (2009)

The hybrid syntactic typology of Sinitic languages

Read More