APP & IRON TRANSPORT

Regulation of iron homeostasis through beta-amyloid precursor processing in neuronal health and disease

 Coordinatore UNIVERSITY OF LEEDS 

 Organization address address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT

contact info
Titolo: Mr.
Nome: Martin
Cognome: Hamilton
Email: send email
Telefono: +44 113 343 4090
Fax: +44 113 343 0949

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-03-01   -   2017-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS

 Organization address address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT

contact info
Titolo: Mr.
Nome: Martin
Cognome: Hamilton
Email: send email
Telefono: +44 113 343 4090
Fax: +44 113 343 0949

UK (LEEDS) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

accumulation    homeostasis    compounds    cell    ferroxidase    nd    tau    disease    fe    too    iron    surface    efflux    correct    neuronal    toxic    app   

 Obiettivo del progetto (Objective)

'The life essential element iron is required as a cofactor in central nervous system metabolic processes, but unbound iron catalyzes the production of toxic reactive oxygen species. Neuronal iron accumulation is a common pathological feature in the cortex in Alzheimer’s disease (AD), the substantia nigra (SN) in Parkinson’s disease (PD), and the tauopathies. Since too much or too little iron can compromise cell viability, cellular iron homeostasis is tightly regulated. Ferroxidases, oxidize Fe2 to Fe3, and are essential for maintaining intracellular iron homeostasis. A deficiency in the surface presented ferroxidase leads to toxic iron accumulation and degeneration. Ferroxidase activities in the brain may fail with aging and a range of neurodegenerative disorders (ND), possibly contributing to disease pathogenesis.

My group has discovered that the ferroxidase activity of β-amyloid precursor protein (APP) is essential for neuronal iron efflux and inhibited APP ferroxidase activity parallels iron accumulation in some ND. Disruption in the correct localization of a ferroxidase may be fundamental in the disease process. Of relevance, neuronal anterograde transport of APP requires tau and we have recently shown decreased tau expression impairs the presence of cell surface APP leading to inefficient efflux of iron and intensifying the risk of excitotoxicty within the region via intraneuronal iron accumulation.

Primary aims will elucidate the role of APP trafficking and processing on iron efflux regulation within general neurobiology and investigate this mechanism in iron accumulating age- and pathologically- affected neurons already known to have problems with APP, tau and excitotoxicity.

Some current therapeutic compounds for ND are proposed to work via restoring metal homeostasis. A final aim will determine if these compounds, as well as a number of novel derivatives, work through a pathway that restores APP to its correct function in neuronal iron efflux.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SVETA (2012)

"Vestibular System, Cognition and Vegetative Regulations"

Read More  

FISCSUST (2011)

Fiscal Sustainability in Europe

Read More  

ARH-ENDO (0)

Mechanism of Endocytosis of the Ldl-Receptor via the Autosomal Recessive Hypercholesterolemia protein

Read More