MORPHOCORDIV

The inherent morphological potential of the actin cortex and the mechanics of shape control during cell division

 Coordinatore UNIVERSITY COLLEGE LONDON 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙500˙000 €
 EC contributo 1˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111109
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-03-01   -   2018-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON

 Organization address address: GOWER STREET
city: LONDON
postcode: WC1E 6BT

contact info
Titolo: Dr.
Nome: Ewa Kamila
Cognome: Paluch
Email: send email
Telefono: 442077000000
Fax: 442077000000

UK (LONDON) hostInstitution 1˙500˙000.00
2    UNIVERSITY COLLEGE LONDON

 Organization address address: GOWER STREET
city: LONDON
postcode: WC1E 6BT

contact info
Titolo: Ms.
Nome: Malgorzata
Cognome: Kielbasa
Email: send email
Telefono: +44 203 108 3064
Fax: +44 20 7813 2849

UK (LONDON) hostInstitution 1˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

turnover    shape    asymmetric    division    mechanics    cells    cellular    network    morphogenesis    cortex    induce    mechanical    physical    cell    elasticity    description    tension    cytokinesis   

 Obiettivo del progetto (Objective)

'The shape of animal cells is primarily determined by the cellular cortex, a cross-linked network of actin and myosin lying directly beneath the plasma membrane. Although it is increasingly clear that the study of cell mechanics is essential to understand cellular morphogenesis, the physical properties of the cortex are poorly understood. Our previous study on the mechanics of cytokinesis identified cortex tension, network turnover and cellular elasticity as key mechanical parameters controlling cell morphology. A physical description coupling cortex mechanics to cellular shape changes indicates that modulation of these three key parameters could be sufficient to induce a variety of morphological behaviors, including symmetric ingression of a contractile ring, cortex oscillations, and even asymmetric cell cleavage. The aim of this proposal is to reveal the intrinsic shape-generating potential of the cortex and to understand how this potential is used and controlled during cell division. To do so, we will first investigate how cortex tension, turnover and cell elasticity are controlled throughout division. We will test our understanding of cell shape mechanics by exploring how perturbing these properties affects the shape of the dividing cell. We will then explore whether cortical contractions can lead to asymmetric cytokinesis by attempting to induce differences in size between daughter cells by mechanical perturbations. Finally, we will use blebs separated from cells as model isolated cortices and investigate the control of shape dynamics in this simplified system. Our interdisciplinary approach will produce an integrated description of the mechanical function of the cortex in cell shape changes. More generally, I expect that this work will unveil some of the fundamental principles of cell morphogenesis by resolving how the coordinated regulation of a single set of physical parameters can unify seemingly disparate cellular morphogenetic events.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

PSARPS (2012)

Practical statistical approaches for addressing replicability problems in life sciences

Read More  

ECONENDLIFE (2011)

The economic evaluation of end of life care

Read More  

NOT (2010)

Narratives of Terror and Disappearance. Fantastic Dimensions of Argentina' s Collective Memory since the Military Dictatorship

Read More