COCHALPEC

Development of electrodes based on copper chalcogenide nanocrystals for photoelectrochemical energy conversion

 Coordinatore ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Prof.
Nome: Kevin
Cognome: Sivula
Email: send email
Telefono: +41 21 693 79 79

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 184˙709 €
 EC contributo 184˙709 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-06-01   -   2015-05-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Prof.
Nome: Kevin
Cognome: Sivula
Email: send email
Telefono: +41 21 693 79 79

CH (LAUSANNE) coordinator 184˙709.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

hydrogen    fabrication    materials    solar    energy    czts    splitting    zcis    meet    fuel    water    charge    cells    promising    composition    pv    conversion    direct    ncs    pec   

 Obiettivo del progetto (Objective)

'Solar energy is renewable and abundant enough to meet the growing energy demand, but its variability limits the application. Direct storage in the form of a clean fuel, like hydrogen, would solve this problem. Photoelectrochemical (PEC) cells employ solar energy to split water molecules producing H2 and O2. Thin films of Cu2ZnSnS4 (CZTS) and ZnCuInS2 (ZCIS) have shown remarkable efficiencies in photovoltaics (PV) and preliminary promising results in PEC cells, but costly fabrication. Currently, much attention is being paid to the synthesis of nanocrystals (NCs) of these materials because of their low cost preparation and tunable optical and electrical properties just by controlling the nanometer dimensions of NCs and the composition of the particles, giving more versatility to meet the energetic requirements for water splitting. These new materials in the forefront of PV remain unexplored in water splitting PEC cells to date. In this project, we propose the fabrication of photoelectrodes based on CZTS and ZCIS NCs to perform the water splitting. First, the control over the size, shape and composition of these NCs will be demonstrated using inexpensive solution-based techniques. Next, two photoelectrode configurations (viz. sensitized metal oxide and 3D-arrays of NCs) will be pursued applying state of the art overlayers to improve the charge separation and the catalytic activity at the interface with water. Finally a PEC device will be assembled that demonstrates a 5% overall solar to hydrogen conversion efficiency. In this research we propose a bottom-up approach whereby the comprehensive analysis of the interfacial charge transfer will both contribute to the basic science of solar energy conversion systems and optimize the performance of very promising materials for direct solar to fuel energy conversion. Our approach will finally create a significant impact on the scientific and general European communities through the dissemination of the field and the results.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ROBOCADEMY (2014)

European Academy for Marine and Underwater Robotics

Read More  

EX-GLACIER (2011)

"A record of rapid climate change from the Pyrenees, Spain"

Read More  

HOLOLAND (2014)

"Charting the holographic quantum landscape, and consequences on charge transport at strong coupling"

Read More