ROS-AUXIN

ROS AND AUXIN CROSSTALK DURING PLANT DEVELOPMENT AND STRESS ADAPTATION

 Coordinatore Masarykova univerzita 

 Organization address address: Zerotinovo namesti 9
city: BRNO STRED
postcode: 60177

contact info
Titolo: Dr.
Nome: Renata
Cognome: Padrtová
Email: send email
Telefono: +420 549 49 5869
Fax: +420 549 49 2556

 Nazionalità Coordinatore Czech Republic [CZ]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-04-01   -   2017-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    Masarykova univerzita

 Organization address address: Zerotinovo namesti 9
city: BRNO STRED
postcode: 60177

contact info
Titolo: Dr.
Nome: Renata
Cognome: Padrtová
Email: send email
Telefono: +420 549 49 5869
Fax: +420 549 49 2556

CZ (BRNO STRED) coordinator 100˙000.00

Mappa

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

crosstalk    stress    ros    mechanisms    responses    plant    induced    photosynthesis    reorientation    developmental    affect    underlying    environmental    simr    homeostasis    auxin    interplay   

 Obiettivo del progetto (Objective)

'Environmental cues represent the major hardships to crop productivity worldwide. Therefore, elucidation of plant stress adaptation networks has become a main biotechnology research objective. Auxin and its distribution rates play key roles in many aspects of plant growth and development, which largely depend on the spatiotemporal control of auxin homeostasis. Upon stress, increased reactive oxygen species (ROS) production affects auxin homeostasis and can lead to a reorientation of growth as part of the stress induced morphogenetic responses (SIMR). Conversely, auxin can trigger a programmed and cell-specific ROS generation to signal developmental and stress responses. There are now clear research evidences that reciprocal interaction between ROS and auxin signalling pathways are the main players of the SIMR, which modulate plant growth and development to attenuate deleterious effects of stress. On the other hand, environmental factors primary affect photosynthesis, compromising plant growth and yield. Basically, photosynthesis acts as global stress sensors activating photosynthesis adaptation and stress responses, which directly affect ROS and auxin homeostasis. Notwithstanding the large number of evidence showing interplay between ROS and auxin on photosynthesis, research on this topic has not been addressed and much of the work that has been done centres on ROS-auxin crosstalk in heterotrophic tissues. Although ROS-auxin interplay is being intensively studied, the mechanisms underlying their crosstalk are poorly understood. In this respect, molecular insight into the nature of ROS-auxin crosstalk remains scarce. The project aims to decipher how environmental and developmental signals are integrated by ROS-auxin crosstalk and to unravel the underlying mechanisms that synchronize stress-induced growth reorientation with the photosynthetic activity, vital for plant survival.'

Altri progetti dello stesso programma (FP7-PEOPLE)

PROM (2015)

Dependence of PRoteorhodopsin-phototrophy on specific dissolved Organic Matter compounds and their link to bacterial carbon cycling in the ocean (PROM)

Read More  

LUNA (2010)

LUnga notte della ricerca - Lange NAcht der Forschung

Read More  

NAM (2008)

New Antimicrobials

Read More