SEROTONINSLEEP

SEROTONERGIC REGULATION OF SLEEP RELATED NEURAL CIRCUIT

 Coordinatore UNIVERSITY COLLEGE LONDON 

 Organization address address: GOWER STREET
city: LONDON
postcode: WC1E 6BT

contact info
Titolo: Ms.
Nome: Malgorzata
Cognome: Kielbasa
Email: send email
Telefono: 4420310000000
Fax: 442078000000

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 231˙283 €
 EC contributo 231˙283 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2015-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON

 Organization address address: GOWER STREET
city: LONDON
postcode: WC1E 6BT

contact info
Titolo: Ms.
Nome: Malgorzata
Cognome: Kielbasa
Email: send email
Telefono: 4420310000000
Fax: 442078000000

UK (LONDON) coordinator 231˙283.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

mechanisms    behavior    hcrt    fish    ht    sleep    human    optogenetic    regulation    circuits    zebrafish    neurons    behaving    brain    direct    neural   

 Obiettivo del progetto (Objective)

'Summary: The appropriate regulation of sleep and wakefulness is a fundamental biological process that impacts human health, cognitive performance, and quality of life. However, the neural mechanisms regulating sleep/wake behavior and its associated circuits in the brain are largely unknown. Recent studies have illustrated the role of hypocretin/orexin (Hcrt) in sleep regulation, but the mechanisms that control the Hcrt system and subsequent changes in neural circuit function are still poorly described. I will take advantage of the larval zebrafish, a genetically and optically accessible model organism whose brain shares basic sleep-related structures with the human brain, in order to systematically investigate how and to what extent serotonergic (5-hydroxytrypamine, 5-HT) neurons of the dorsal raphe nucleus exert effects on sleep cycles via the Hcrt system and associated downstream circuitry. Furthermore, I will disambiguate whether 5-HT neurons affect sleep by direct influence on Hcrt neuron activity or by signalling downsteam on Hcrt target neurons. These analyses require a multidisciplinary approach possible only in zebrafish. First, I will use a novel bioluminescence-based method to investigate how drugs that target the 5-HT system, alter the activity of Hcrt and 5-HT neurons in freely behaving fish. Second, in order to verify a causal relationship between activity in 5-HT and Hcrt neurons and observed behavioral changes, I will activate the same neural populations with optogenetic methods while monitoring behavior in freely behaving fish. Third, I will use the same pharmacological and optogenetic approaches to visualize the direct effects of specific subpopulations of 5-HT and Hcrt neurons on activity throughout the whole brain with functional two-photon calcium imaging. The results of these experiments will provide invaluable insights into how specific neuromodulatory systems interact with each other in order to regulate neural circuits underlying sleep.'

Altri progetti dello stesso programma (FP7-PEOPLE)

TEJAM (2008)

Novel Antimicrobials from Endophytes of Northern Medicinal Plants

Read More  

MOBILECLOUD (2014)

Linking Sino-European Research Institutions in the Mobile Cloud Computing Era

Read More  

MEMORYCODES (2014)

Time and experience dependent evolution of hippocampal memory codes

Read More