APPMSFT

AUTOMORPHISMS AND PERIODIC POINTS FOR MULTIDIMENSIONAL SHIFTS OF FINITE TYPE

 Coordinatore BEN-GURION UNIVERSITY OF THE NEGEV 

 Organization address address: Office of the President - Main Campus
city: BEER SHEVA
postcode: 84105

contact info
Titolo: Ms.
Nome: Daphna
Cognome: Tripto
Email: send email
Telefono: +972 8 6472435
Fax: +972 8 6472930

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-10-01   -   2017-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    BEN-GURION UNIVERSITY OF THE NEGEV

 Organization address address: Office of the President - Main Campus
city: BEER SHEVA
postcode: 84105

contact info
Titolo: Ms.
Nome: Daphna
Cognome: Tripto
Email: send email
Telefono: +972 8 6472435
Fax: +972 8 6472930

IL (BEER SHEVA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

representation    multidimensional    automorphisms    invertible    our    automata    invariants    automorphism    shifts    certain    finite    cellular   

 Obiettivo del progetto (Objective)

'Within the framework of Symbolic Dynamics, we propose to study the automorphisms of Multidimensional Shifts of Finite Type. We propose to explore certain algebraic invariants, analogous to the Dimension-Representation and the Gyration Numbers for automorphisms of one-dimensional Shifts of Finite Type. Our aim is to utilize the above invariants and confront certain natural problems related to these automorphisms: Extending an automorphism of a finite subsystem and generating an automorphism by finite-order ``eventual automorphisms'. Our project has direct implications in the context of Multidimensional Cellular Automata. Namely, the existence of block representation for multidimensional invertible cellular automata and the admissibility of a given set periodic orbits in a multidimensional invertible cellular automata.'

Altri progetti dello stesso programma (FP7-PEOPLE)

TANDEM (2014)

Trait diversity: assemblage of communities and their feedbacks to Ecosystem Multifunctionality

Read More  

LILAC (2014)

Laser-Initiated Liquid-Assisted Colloidal Lithography

Read More  

MCS (2012)

Mammalian Cell Surface Reorganization During Cell Division

Read More