SMDR

Spinning Mesh Disc Reactors: A New Paradigm for Photocatalytic and Enzymatic Reaction Intensification

 Coordinatore UNIVERSITY OF BATH 

 Organization address address: CLAVERTON DOWN
city: BATH
postcode: BA2 7AY

contact info
Titolo: Ms.
Nome: Hazel
Cognome: Wallis
Email: send email
Telefono: +44 01225 386822

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-04-01   -   2017-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF BATH

 Organization address address: CLAVERTON DOWN
city: BATH
postcode: BA2 7AY

contact info
Titolo: Ms.
Nome: Hazel
Cognome: Wallis
Email: send email
Telefono: +44 01225 386822

UK (BATH) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

catalysts    reactor    patterson    conventional    rates    dr    catalyst    intensification    area    mass    transfer    group    mesh    reactors    disc    smdr    spinning    nanostructured    reaction   

 Obiettivo del progetto (Objective)

'This project will develop a new paradigm in spinning disc process intensification technology: the spinning mesh disc reactor (SMDR). The SMDR uses a high surface area rotating mesh supporting a catalyst to create process intensification. A liquid is centrifugally forced and accelerated into the mesh creating rapid mixing and increased heat and mass transfer rates compared to conventional reactors, accelerating reaction rates. It is superior to conventional spinning disc reactors as the mesh keeps all of the catalyst in the intensified (spinning) reaction zone and helps to protect these catalysts from deactivation from excessive hydrodynamic forces, allowing fragile nanostructured catalysts and enzymes to be used. Therefore the aim of this research is to fully characterise the SMDR for two important reaction systems: (1) nanostructured photocatalytic systems for the degradation of harmful trace pharmaceuticals in wastewater, (2) enzymatic biochemical transformations of waste oils (in particular to biodiesel). Reaction rates and mechanism, mass transfer effects, catalyst reusability and durability, all compared to conventional reactors, will be evaluated both experimentally and mathematically. Residence time distributions, high speed camera analysis of mesh flows and computational fluid dynamics will be used to evaluate reactor hydrodynamics and operation. This project will enable Dr Patterson to successfully integrate into the EU by providing him with a secure basis from which to transfer, build and extend his existing research base from New Zealand to the University of Bath. It will provide him and his research group with the funds to access the analysis and characterisation equipment needed to produce high impact research. Ultimately this grant will provide the foundation from which Dr Patterson will build a world leading group in the EU in the area of Nanostructured and Tuneable Materials for sustainable applications in Separation and Reaction Engineering.'

Altri progetti dello stesso programma (FP7-PEOPLE)

BIOCHEMLIG (2009)

Bio-Orthogonal Chemo-Specific Ligation

Read More  

ACTIVE NEC (2013)

Active Nanoantenna-Exciton-Complexes

Read More  

PSYCHOLOGICAL GAMES (2009)

Psychological game theory and Bayesian rationality

Read More