RMPSHSSI

REVEALING MYOSIN'S POWER STROKE WITH HIGH-SPEED SCATTERING INTERFEROMETRY

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-10-01   -   2015-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

UK (OXFORD) coordinator 221˙606.40

Mappa

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

particle    biological    objects    stroke    individual    motor    visualize    interferometric    function    motion    fundamental    iscat    considerable    thereby    scattering    tracking    concerning    detection    imaging    techniques    single    myosin    respect    power    powerful   

 Obiettivo del progetto (Objective)

'The fundamental goal of microscopic imaging is to visualize and identify small objects and observe their motion. Of the many available techniques, single particle tracking has been an immensely powerful tool in the life sciences for studying the motion of individual objects and thereby the function of a large variety biological processes. Despite considerable advances, following the motion of individual molecules on the relevant time and size scale has remained an insurmountable challenge. Here, we propose to construct a novel optical microscope based on interferometric scattering (iSCAT) detection that will bridge the considerable gap between the temporal and spatial accuracy provided by current single molecule methods. The primary objective of this work is to utilize the unique imaging properties of interferometric scattering detection to directly visualize and thereby understand the power stroke of Myosin V. Myosin V is a molecular motor, a cargo transporter that moves along actin filaments while hydrolyzing ATP. A wealth of knowledge concerning myosin’s function has been acquired over the past decades. Nevertheless, many of the fundamental questions concerning the mechanism of the power stroke for these motors remain, largely due to fundamental limitations associated with the employed techniques. In this respect, the application of high-speed iSCAT to study the motion of Myosin V will represent a significant step forward in our understanding of the functionality of this important motor. We aim that this work will establish iSCAT as a viable and powerful in vitro imaging platform with capabilities that are several orders of magnitude beyond what is currently possible with state of-the-art single particle tracking approaches. As a consequence, this proposal will include specifics with respect both the biological and the technical challenges involved with the proposed studies.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ALTANGIOTARGET (2015)

Understanding tumour resistance: Receptors and signalling pathways that can lead the race against tumour angiogenesis

Read More  

MICROCARE (2010)

Microsystems and Bioanalysis Platforms for Health Care MICROCARE

Read More  

EU_ARCTYCA (2014)

"“Boosting the EU ARCTic poliCY: security, sAfety and sustainability”"

Read More