CAPS

"Capillary suspensions: a novel route for versatile, cost efficient and environmentally friendly material design"

 Coordinatore Karlsruher Institut fuer Technologie 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙489˙617 €
 EC contributo 1˙489˙617 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-StG
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-08-01   -   2018-07-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    Karlsruher Institut fuer Technologie

 Organization address address: Kaiserstrasse 12
city: Karlsruhe
postcode: 76131

contact info
Titolo: Dr.
Nome: Berndt
Cognome: Kronimus
Email: send email
Telefono: +49 721 608 22051

DE (Karlsruhe) hostInstitution 1˙489˙617.60
2    Karlsruher Institut fuer Technologie

 Organization address address: Kaiserstrasse 12
city: Karlsruhe
postcode: 76131

contact info
Titolo: Dr.
Nome: Erin Crystal
Cognome: Koos
Email: send email
Telefono: +49 721 608 43760
Fax: +49 721 608 43758

DE (Karlsruhe) hostInstitution 1˙489˙617.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

capillary    variety    suspension    gel    coatings    porous    food    materials    admixtures    network    suspensions    strength    amount    rheological   

 Obiettivo del progetto (Objective)

'A wide variety of materials including coatings and adhesives, emerging materials for nanotechnology products, as well as everyday food products are processed or delivered as suspensions. The flow properties of such suspensions must be finely adjusted according to the demands of the respective processing techniques, even for the feel of cosmetics and the perception of food products is highly influenced by their rheological properties. The recently developed capillary suspensions concept has the potential to revolutionize product formulations and material design. When a small amount (less than 1%) of a second immiscible liquid is added to the continuous phase of a suspension, the rheological properties of the mixture are dramatically altered from a fluid-like to a gel-like state or from a weak to a strong gel and the strength can be tuned in a wide range covering orders of magnitude. Capillary suspensions can be used to create smart, tunable fluids, stabilize mixtures that would otherwise phase separate, significantly reduce the amount organic or polymeric additives, and the strong particle network can be used as a precursor for the manufacturing of cost-efficient porous ceramics and foams with unprecedented properties. This project will investigate the influence of factors determining capillary suspension formation, the strength of these admixtures as a function of these aspects, and how capillary suspensions depend on external forces. Only such a fundamental understanding of the network formation in capillary suspensions on both the micro- and macroscopic scale will allow for the design of sophisticated new materials. The main objectives of this proposal are to quantify and predict the strength of these admixtures and then use this information to design a variety of new materials in very different application areas including, e.g., porous materials, water-based coatings, ultra low fat foods, and conductive films.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

MAST-CELL-FUNCTIONS (2009)

Genetically defined and selectively mast cell-deficient mouse model to unravel the immunological roles of mast cells

Read More  

PROKRNA (2011)

Prokaryotic RNomics: Unravelling the RNA-mediated regulatory layers

Read More  

TWISTS (2014)

Twists & more: the complex shape of light

Read More