GLIMFLO

Global to Local Impacts of Flow over Orography

 Coordinatore THE UNIVERSITY OF READING 

 Organization address address: WHITEKNIGHTS CAMPUS WHITEKNIGHTS HOUSE
city: READING
postcode: RG6 6AH

contact info
Titolo: Mr.
Nome: Tom
Cognome: Reynolds
Email: send email
Telefono: +44 1183786060
Fax: +44 1183788979

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2017-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF READING

 Organization address address: WHITEKNIGHTS CAMPUS WHITEKNIGHTS HOUSE
city: READING
postcode: RG6 6AH

contact info
Titolo: Mr.
Nome: Tom
Cognome: Reynolds
Email: send email
Telefono: +44 1183786060
Fax: +44 1183788979

UK (READING) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

shear    weather    clear    impact    mechanisms    theory    wave    air    hazards    phenomena    global    scales    forecast    triggering    climate    lee    turbulence    wind    windstorms    waves    drag    become    meteorology    downslope    models    rotors    parametrizations    mountain   

 Obiettivo del progetto (Objective)

'Developing accurate forecasts for weather, climate and meteorological natural hazards has become a priority due to the ensuing savings in human lives and property damage. Mountain waves affect the atmosphere over a wide range of scales, causing severe local weather phenomena such as downslope windstorms, lee-wave rotors and clear-air turbulence, which are also important aviation hazards. However, the triggering mechanisms controlling these phenomena are still largely unknown, and methods used to model them operationally have a weak physical basis. My research will bridge the conceptual gap currently existing between our understanding of such phenomena at low and high amplitude, via a combination of theory and numerical simulations. I will assess the triggering mechanisms and controlling parameters of downslope windstorms, lee-wave rotors and clear-air turbulence.

At larger scales, the drag force associated with mountain waves decelerates the atmospheric circulation, and must be parametrized in global weather and climate models, leading to temperature errors in excess of 10K in the polar stratosphere if omitted. Substantial imbalances in the modelled angular momentum budget of the Earth suggest that the impact of vertical wind shear on mountain wave drag, currently neglected in drag parametrizations in all global forecast models, should be included. I have developed the theory necessary to do this. Through partnerships with the UK Met Office and ECMWF, I will perform high-resolution verification of drag parametrizations that take wind shear into account, implement them, and test their impact on forecast skill.

My appointment to the University of Reading as a Lecturer (in one of the top Meteorology departments in Europe) provides optimal conditions to increase the impact of my research, interact with highly skilled colleagues and maintain, as well as enhance, my collaborations abroad, giving me the opportunity to become a leading specialist in Mountain Meteorology.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SOLARIN (2013)

Solar cells based on InGaN nanostructures on silicon

Read More  

LONG_RANGE_CC (2013)

The rules of connectivity of genetically-defined long-range projections

Read More  

GENETICHTS REVEAL PF (2011)

"Genetic High Throughput Screenings by random mutagenesis to identify Plasmodium falciparum critical genes for asexual growth, sexual differentiation and virulence affecting host immune responses"

Read More