NACRE

Impact of Nitrate on Aerosol Composition and Radiative Effects

 Coordinatore MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V. 

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Nome: Jens
Cognome: Egler
Email: send email
Telefono: +49 6131 305 1000

 Nazionalità Coordinatore Germany [DE]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2017-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Nome: Jens
Cognome: Egler
Email: send email
Telefono: +49 6131 305 1000

DE (MUENCHEN) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

ccn    aerosol    interactions    models    accurately    predict    mineral    radiative    sea    size    aerosols    salt    anthropogenic    inorganic    model    framework    dust    climate    global    nitrate    particulate    chemistry   

 Obiettivo del progetto (Objective)

'Atmospheric aerosols, notably those from anthropogenic sources, adversely affect human health and play an important role in changing the Earth’s climate. The scientific interest in these effects of anthropogenic aerosols initially focused on sulfate and to a lesser extent on other low-volatile inorganic species, and subsequently on carbonaceous compounds. Inorganic particulate nitrate constituents also contribute significantly to the total aerosol mass, especially in urban areas and industrialized regions. However, only a limited number of global models have been used to predict particulate nitrate concentrations and their regional distributions, while even fewer studies have addressed the direct and indirect effects of aerosol nitrate. The scope of the proposed work is to improve the representation of nitrate aerosol formation and size distribution in a climate chemistry model to accurately predict their global concentration fields and their effects on global air quality and climate. Improvements will include i) nitrate interactions with mineral dust and sea salt, using the thermodynamic equilibrium models EQSAM and ISORROPIA-II, ii) increase on the accuracy of the predicted nitrate aerosol size distribution by using the hybrid approach for aerosol dynamics, iii) explicit calculation of nitrate aerosol formation using the comprehensive aerosol chemistry model MECCA-AERO, iii) the use of a “unified dust activation framework” to account for the CCN activity of mineral dust coated with soluble aerosols (like nitrates) and iv) the use of the adjoint sensitivity technique to investigate the uncertainty of the CDNC predictions to aerosol number and hygroscopicity. The new modeling framework will be used to accurately predict i) the nitrate formation and growth, its interactions with mineral dust and sea salt, as well as the radiative forcing of nitrate, its effects on mineral dust and sea salt CCN activity and its impact on future aerosol radiative effects and clouds.'

Altri progetti dello stesso programma (FP7-PEOPLE)

INTLTAXFAIRNESS (2010)

THE USE OF INTERNATIONAL TAX ARRANGEMENTS TO PROMOTE GLOBAL WEALTH REDISTRIBUTION

Read More  

AQUACAT (2014)

Tailor made lipases for synthetic catalysis in biphasic media: From poly (lactone) applications towards novel sugar esters

Read More  

PHARMACO-FMRI (2011)

The interplay between the appetitive dopaminergic and the aversive serotonergic system in motivational control of behavior

Read More