ABDESIGN

Computational design of novel protein function in antibodies

 Coordinatore WEIZMANN INSTITUTE OF SCIENCE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Israel [IL]
 Totale costo 1˙499˙930 €
 EC contributo 1˙499˙930 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-StG
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2018-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE

 Organization address address: HERZL STREET 234
city: REHOVOT
postcode: 7610001

contact info
Titolo: Dr.
Nome: Sarel-Jacob
Cognome: Fleishman
Email: send email
Telefono: +972 8 934 6361
Fax: +972 8 934 4118

IL (REHOVOT) hostInstitution 1˙499˙930.00
2    WEIZMANN INSTITUTE OF SCIENCE

 Organization address address: HERZL STREET 234
city: REHOVOT
postcode: 7610001

contact info
Titolo: Ms.
Nome: Gabi
Cognome: Bernstein
Email: send email
Telefono: +972 8 934 6728
Fax: +972 8 934 4165

IL (REHOVOT) hostInstitution 1˙499˙930.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

computational    strategy    cdrs    experimental    rigidify    principles    antibody    antibodies    loop    sequence    insights    structure    first    natural   

 Obiettivo del progetto (Objective)

'We propose to elucidate the structural design principles of naturally occurring antibody complementarity-determining regions (CDRs) and to computationally design novel antibody functions. Antibodies represent the most versatile known system for molecular recognition. Research has yielded many insights into antibody design principles and promising biotechnological and pharmaceutical applications. Still, our understanding of how CDRs encode specific loop conformations lags far behind our understanding of structure-function relationships in non-immunological scaffolds. Thus, design of antibodies from first principles has not been demonstrated. We propose a computational-experimental strategy to address this challenge. We will: (a) characterize the design principles and sequence elements that rigidify antibody CDRs. Natural antibody loops will be subjected to computational modeling, crystallography, and a combined in vitro evolution and deep-sequencing approach to isolate sequence features that rigidify loop backbones; (b) develop a novel computational-design strategy, which uses the >1000 solved structures of antibodies deposited in structure databases to realistically model CDRs and design them to recognize proteins that have not been co-crystallized with antibodies. For example, we will design novel antibodies targeting insulin, for which clinically useful diagnostics are needed. By accessing much larger sequence/structure spaces than are available to natural immune-system repertoires and experimental methods, computational antibody design could produce higher-specificity and higher-affinity binders, even to challenging targets; and (c) develop new strategies to program conformational change in CDRs, generating, e.g., the first allosteric antibodies. These will allow targeting, in principle, of any molecule, potentially revolutionizing how antibodies are generated for research and medicine, providing new insights on the design principles of protein functional sites.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

VISREC (2009)

Visual Recognition

Read More  

UB12 (2012)

Ergodic Group Theory

Read More  

ECOGENOMICINBREEDING (2012)

Comparative studies of inbreeding effects on evolutionary processes in non-model animal populations

Read More