MAZEST

M- and Z-estimation in semiparametric statistics : applications in various fields

 Coordinatore UNIVERSITE CATHOLIQUE DE LOUVAIN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Belgium [BE]
 Totale costo 750˙000 €
 EC contributo 750˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2007-StG
 Funding Scheme ERC-SG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-07-01   -   2014-06-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITE CATHOLIQUE DE LOUVAIN

 Organization address address: Place De L'Universite 1
city: LOUVAIN LA NEUVE
postcode: 1348

contact info
Titolo: Ms.
Nome: Anne
Cognome: Bovy
Email: send email
Telefono: 3210473873
Fax: 3210474830

BE (LOUVAIN LA NEUVE) hostInstitution 0.00
2    UNIVERSITE CATHOLIQUE DE LOUVAIN

 Organization address address: Place De L'Universite 1
city: LOUVAIN LA NEUVE
postcode: 1348

contact info
Titolo: Prof.
Nome: Ingrid
Cognome: Van Keilegom
Email: send email
Telefono: 3210474330
Fax: 3210473032

BE (LOUVAIN LA NEUVE) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

class    models    semiparametric    statistics    parametric    estimation    mathematical    theory    nonparametric    estimators   

 Obiettivo del progetto (Objective)

'The area of semiparametric statistics is, in comparison to the areas of fully parametric or nonparametric statistics, relatively unexplored and still in full development. Semiparametric models offer a valid alternative for purely parametric ones, that are known to be sensitive to incorrect model specification, and completely nonparametric models, which often suffer from lack of precision and power. A drawback of semiparametric models so far is, however, that the development of mathematical properties under these models is often a lot harder than under the other two types of models. The present project tries to solve this difficulty partially, by presenting and applying a general method to prove the asymptotic properties of estimators for a wide spectrum of semiparametric models. The objectives of this project are twofold. On one hand we will apply a general theory developed by Chen, Linton and Van Keilegom (2003) for a class of semiparametric Z-estimation problems, to a number of novel research ideas, coming from a broad range of areas in statistics. On the other hand we will show that some estimation problems are not covered by this theory, we consider a more general class of semiparametric estimators (M-estimators called) and develop a general theory for this class of estimators. This theory will open new horizons for a wide variety of problems in semiparametric statistics. The project requires highly complex mathematical skills and cutting edge results from modern empirical process theory.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

NEAR-INFRARED PROBES (2014)

Near-infrared fluorescent probes based on bacterial phytochromes for in vivo imaging

Read More  

SAW (2012)

Symplectic Aspects of Weak KAM theory

Read More  

GAMETE RECOGNITION (2011)

Molecular Basis of Mammalian Egg-Sperm Interaction

Read More