NUMIWING

Numerical modelling of inflatable airborne wind energy systems

 Coordinatore TECHNISCHE UNIVERSITEIT DELFT 

 Organization address address: Stevinweg 1
city: DELFT
postcode: 2628 CN

contact info
Titolo: Mr.
Nome: Martin
Cognome: Hoekstra
Email: send email
Telefono: 31152785214

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-10-01   -   2017-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT DELFT

 Organization address address: Stevinweg 1
city: DELFT
postcode: 2628 CN

contact info
Titolo: Mr.
Nome: Martin
Cognome: Hoekstra
Email: send email
Telefono: 31152785214

NL (DELFT) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

harness    turbines    airborne    structure    dynamics    structural    interactions    model    wing    mesh    energy    power    aero    awe    fluid    wind    conventional    mutual    computational    inflatable    altitudes    numerical   

 Obiettivo del progetto (Objective)

'The proposed research aims to numerically model the mutual interactions between the aero- and structural- dynamics of inflatable airborne wind energy systems. Such systems offer several advantages over conventional wind turbines. For example, they harness stronger and steadier winds by flying at moderate to high altitudes, they are cheap to manufacture, and they can be rapidly deployed.

Airborne wind energy (AWE) is a novel area of research, where conventional wind turbines cannot be used. At increasing altitudes, an excessive amount of structural materials would be needed to withstand the high mechanical stresses induced by heavy rotors, when placed on tower-based foundations. A competitive approach for AWE is to harness wind energy with an inflatable wing tethered to a ground station. Numerical tools capable of calculating the complete interactions between aerodynamics, structural dynamics, and flight dynamics of such power systems are currently at an early stage of development. An efficient strategy to minimise the computational cost is also lacking. To fill this knowledge gap, cutting-edge fluids and solids computational methods will be employed. Key components are: (a) a conservative dual-mesh approach for modelling fluid-structure interactions, (b) a method for predicting the motions of an inflatable membrane wing, and (c) dynamic mesh adaptivity to refine the fluid-structure interfaces.

The overall deliverable is an open-source code to model the mutual interactions between airflows and airborne wind energy systems. The proposed numerical tool will be capable of: (a) determining the impact of the system on the surrounding airflow, (b) computing the interactions between aero- and structural- dynamics of an inflatable wing, and (c) estimating the power extracted by the system.'

Altri progetti dello stesso programma (FP7-PEOPLE)

GEOCYCL (2008)

Influence of periodic climate changes on the evolution of mountain ranges

Read More  

NEUROGPLACECELLADS (2010)

Role of adult-generated neurons in hippocampal network activity for stress integration and antidepressant effects

Read More  

POLYPROT (2012)

Protein-Repellent Polymers

Read More