ODICODAS

Optical dissection of cortical dopamine signaling

 Coordinatore UNIVERSITE DE GENEVE 

 Organization address address: Rue du General Dufour 24
city: GENEVE
postcode: 1211

contact info
Titolo: Prof.
Nome: Daniel
Cognome: Huber
Email: send email
Telefono: +41 22 397 53 47
Fax: +41 22 379 54 02

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 184˙709 €
 EC contributo 184˙709 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-05-01   -   2016-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITE DE GENEVE

 Organization address address: Rue du General Dufour 24
city: GENEVE
postcode: 1211

contact info
Titolo: Prof.
Nome: Daniel
Cognome: Huber
Email: send email
Telefono: +41 22 397 53 47
Fax: +41 22 379 54 02

CH (GENEVE) coordinator 184˙709.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

dopamine    terminals    plasticity    learning    behavioral    exact    skills    cortex    dopaminergic    questions    axon    motor    cortical   

 Obiettivo del progetto (Objective)

'Coordination, execution and learning of skilled movements strongly depend on motor cortex function, which, in turn, depends on the modulatory action of different neurotransmitters. In particular, dopaminergic inputs to the motor cortex have been associated with synaptic plasticity, changes in cortical excitability and modulation of cortical motor maps. The integrity of dopaminergic terminals is required for the acquisition of novel motor tasks, but not for the performance of already learned ones. Despite evidence pointing to the importance of dopamine in the learning of novel motor skills, technical limitations have impeded solving several key questions. For instance, what are the exact behavioral conditions leading to dopamine release in the motor cortex during skill learning? Are dopamine fibers in the motor cortex synchronously activated affecting large cortical areas? Is dopamine necessary and/or sufficient for cortical motor learning? I will address these questions by combining my expertise in the field of dopamine signaling with the use of novel optical techniques recently developed by the European host institution and thereby dissect the role of dopamine with never-before-reached level of spatio-temporal accuracy. Specifically I aim to use in vivo two-photon imaging and optogenetic manipulations of genetically targeted dopamine axon terminals in the mouse motor cortex in combination with quantitative behavioral testing and characterize their role in the learning of novel motor skills. By recording and manipulating dopamine axon activity in the motor cortex I will test the hypothesis that dopamine acts as a necessary global signal of reward prediction error at the motor cortex level. This project will provide novel insights in the exact contribution of dopaminergic neurotransmission to motor learning and to cortical microcircuit plasticity and will further our knowledge on the basic neuronal mechanisms governing our behavior.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ISOGIRE (2012)

"Insights from heavy stable isotopes to the study of Ag (and Ag-nanoparticles), Cu and Zn contaminations and biogeochemical processes in the Gironde Watershed and Estuary"

Read More  

MASCARA (2013)

Quantum Dynamics of Strongly Correlated Systems and Ultra-Cold Atomic Gases

Read More  

HOLOLAND (2014)

"Charting the holographic quantum landscape, and consequences on charge transport at strong coupling"

Read More