EAGLE

Exploring quantum Aspects of GravitationaL wavE detectors

 Coordinatore THE UNIVERSITY OF BIRMINGHAM 

 Organization address address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT

contact info
Titolo: Mr.
Nome: Xavier
Cognome: Rodde
Email: send email
Telefono: 441214000000
Fax: 441214000000

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-03-01   -   2016-02-29

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM

 Organization address address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT

contact info
Titolo: Mr.
Nome: Xavier
Cognome: Rodde
Email: send email
Telefono: 441214000000
Fax: 441214000000

UK (BIRMINGHAM) coordinator 221˙606.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

detectors    fundamental    gravitational    first    theory    macroscopic    masses    dynamics    waves    instruments    noise    wave    mechanics    quantum   

 Obiettivo del progetto (Objective)

'Gravitational-waves, predicted by Einstein's general theory of relativity, will open up a new window into the universe. Directly detecting them and eventually extracting information about astronomical phenomena requires new instruments with extremely high sensitivity, which only became feasible recently. The current paradigm of gravitational-wave detectors uses kilometre-scale laser interferometers with suspended mirror-endowed test masses; the so-called advanced gravitational-wave detectors currently under construction are expected to achieve the first direct detection of gravitational waves. However, in order to establish gravitational wave detectors as efficient sources for astrophysical information, the signal to noise ratio of these instruments needs to be improved further. Advanced detectors are expected to be limited by quantum noise around their most sensitive band, which arises from fundamental quantum fluctuations in the optical field. On the one hand, this implies that we need to use quantum mechanics to describe them, and that we must manipulate the quantum coherence to enhance their sensitivities. On the other hand, they provide us, for the first time, with platforms for probing the quantum behaviour of macroscopic objects --- kilogram-scale test masses. In this project, we aim (i) to explore different approaches for reducing quantum noise and (ii) to study tests of quantum mechanics via precision measurements of quantum dynamics of the macroscopic test masses. In particular, we will (i) develop numerical tools for optimizing the quantum noise of complex interferometer configurations; (ii) use quantum measurement theory to better understand the fundamental quantum limit of gravitational wave detectors; and (iii) make a systematic study of how quantum dynamics of macroscopic test masses encode the information of possible modifications to quantum mechanics.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ALOE-DIVERSITY (2010)

Phylogeny and ethnobotany: Testing predictive approaches to plant drug discovery in the genus Aloe L. (Asphodelaceae)

Read More  

BALTIC SEALS HISTORY (2009)

Tracking the impact of Holocene environmental change on the population genetics and demographics of four Baltic seal species

Read More  

CHLAFISH (2013)

"Novel Fish Pathogens of the Chlamydiae: Genomic, Proteomic and Metabolomic Investigations"

Read More