HAVIX

Harmonic Analysis for optimal coding and the design principles of brain's Visual corteX

 Coordinatore UNIVERSIDAD AUTONOMA DE MADRID 

 Organization address address: CALLE EINSTEIN, CIUDAD UNIV CANTOBLANCO RECTORADO 3
city: MADRID
postcode: 28049

contact info
Titolo: Ms.
Nome: Mª Carmen
Cognome: Puerta
Email: send email
Telefono: +34 91 497 8479
Fax: +34 91 497 5269

 Nazionalità Coordinatore Spain [ES]
 Totale costo 166˙336 €
 EC contributo 166˙336 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-04-01   -   2016-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSIDAD AUTONOMA DE MADRID

 Organization address address: CALLE EINSTEIN, CIUDAD UNIV CANTOBLANCO RECTORADO 3
city: MADRID
postcode: 28049

contact info
Titolo: Ms.
Nome: Mª Carmen
Cognome: Puerta
Email: send email
Telefono: +34 91 497 8479
Fax: +34 91 497 5269

ES (MADRID) coordinator 166˙336.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

noncommutative    visual    approximation    geometric    theory    functional    architecture    cortex    nonlinear    wavelet    interdisciplinary    harmonic    france    groups    mathematical    techniques   

 Obiettivo del progetto (Objective)

'HAViX is an interdisciplinary project on the interplay between frame theory, nonlinear approximation and group theory, aimed to obtain results relevant to the understanding of the functional architecture of brain's visual cortex and to applications to artificial vision.

The objectives are highly relevant mathematical results with respect to deep current problems in harmonic analysis, and concern the characterization of noncommutative shift-invariant systems, the study of geometric properties of continuous wavelet transforms and the introduction of new techniques in nonlinear approximation. New approaches will be developed to address such topics, involving techniques from different areas of mathematical analysis such as abstract harmonic analysis and noncommutative Fourier duality, complex analysis, geometric and nonlinear analysis on groups.

The expected results will permit to severely improve the present models of the functional architecture of the visual cortex and provide solid instruments for geometric data encoding and compression.

The proposed mobility is from France, research center CAMS, mixed unit CNRS - EHESS, to Spain, Autonoma University of Madrid, Mathematics Department, and is motivated by the complementarity of competencies between the applicant, D. Barbieri, whose research activity in Italy and France allowed him to develop a strong interdisciplinary experience on different techniques of Analysis on Groups and on Modeling of the Visual Cortex, and the Scientist in Charge, E. Hernandez, who has an extremely high research expertise in Wavelet Theory, Nonlinear Approximation and Function Spaces, and belongs to a Host Institution that is a world excellence in Harmonic Analysis.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SCIENCE ON TV (2010)

Identifying best practices for successful facilitation of science learning through general interest television programming

Read More  

PRONITROARAB (2012)

NO-dependent protein translocation and S-nitrosylation of nuclear proteins in Arabidopsis thaliana

Read More  

CCMEBAZ (2011)

Molecular basis of cell communication during a migratory event that establishes brain asymmetry in zebrafish

Read More