QGTAGCMSHI

Quark-gluon tagged jet quenching studies in PbPb collisions with the CMS detector at LHC

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Mr.
Nome: Philippe
Cognome: Cavelier
Email: send email
Telefono: +33 1 45075158

 Nazionalità Coordinatore France [FR]
 Totale costo 194˙046 €
 EC contributo 194˙046 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2015
 Periodo (anno-mese-giorno) 2015-01-01   -   2016-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Mr.
Nome: Philippe
Cognome: Cavelier
Email: send email
Telefono: +33 1 45075158

FR (PARIS) coordinator 194˙046.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

ion    gluons    heavy    lhc    color    hadron    quenching    proton    charged    nuclear    quarks    energy    loss    quark    gluon    collisions    energetic    jet    jets    medium    qcd    cms   

 Obiettivo del progetto (Objective)

'The studies of high energy nuclear (heavy-ion) collisions have been exploring the properties of QCD under extreme conditions. It is predicted that the matter in these conditions forms a new phase which is called the quark-gluon plasma (QGP). Many features of this matter is already observed in RHIC and LHC experiments, one of them being the jet-quenching phenomenon. The color-charged highly-energetic projectiles (quarks and gluons) lose some of their energy while traversing this medium, and form jets that are less energetic compared to those produced in proton-proton collisions. This is reflected in the observed hadron and jet spectra, as well as correlations between jets. The analyses so far, however, have not distinguished whether an observed jet originates from a quark or a gluon. This is a rather important aspect, since the color factor difference causes quarks and gluons to suffer the energy-loss differently. While setting constraints on the parameters of the energy-loss, the quark-gluon identification will also help characterization of collisions and make it possible to investigate the patterns of the quenched energy in more detail. The distinct fragmentation features of quark jets and gluon jets make them possible to distinguish, which is a technique already practiced in pp collisions. Performing a similar method in heavy-ion collisions can shed light onto the quenching mechanism in the hot and dense QCD medium. However, more advanced methods have to be developed in order to cope for the large underlying event in the nuclear collisions. The CMS detector at the LHC experiment at CERN has excellent capabilities for charged hadron tracking and calorimetric energy measurement, which constitute the essential elements of jet studies. In addition, with its triggering capabilities, CMS has collected large datasets of dijet and photonjet events. These different channels, having different parton content, can be used for controlling the quark-gluon tagging performance.'

Altri progetti dello stesso programma (FP7-PEOPLE)

STARIDP (2014)

Structure and function of intrinsically disordered proteins (IDPs) in cell cycle regulation

Read More  

CONPELHAB (2011)

Conserving pelagic habitats in changing environments: marine top predators as bioindicators

Read More  

HISTONEGERMCELLS (2013)

The role of the histone variant H3.3 in epigenetic reprogramming of primordial germ cells

Read More