MACS

The contribution of cellular adhesions to matrix remodeling in health and disease

 Coordinatore EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZURICH 

 Organization address address: Raemistrasse 101
city: ZUERICH
postcode: 8092

contact info
Titolo: Prof.
Nome: Viola
Cognome: Vogel
Email: send email
Telefono: +41 44 6320887
Fax: +41 44 6321073

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 199˙317 €
 EC contributo 199˙317 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-03-01   -   2016-02-29

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZURICH

 Organization address address: Raemistrasse 101
city: ZUERICH
postcode: 8092

contact info
Titolo: Prof.
Nome: Viola
Cognome: Vogel
Email: send email
Telefono: +41 44 6320887
Fax: +41 44 6321073

CH (ZUERICH) coordinator 199˙317.60

Mappa

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

perturbations    functioning    tissues    exposed    tissue    bridging    disorganization    proteins    impact    mechanical    exogenous    cellular    underlying    healthy    endogenous    cell    matrix    fibrous    diseased    adhesions    tension    adhesion    loading    upon    remodeling    cyclic    cells   

 Obiettivo del progetto (Objective)

'Tissues in the human body are exposed to cyclic loading and have the capacity to adapt, to meet new loading demands. Cells facilitate such adaptation by responding to mechanical triggers, which depends on the balance between endogenous tension (cellular forces) and exogenous tension (matrix stiffness and resistance to stretch). This is regulated by matrix adhesions: the cellular force sensors. In healthy tissue, cells can positively contribute to tissue functioning by synthesizing additional matrix components, a process initiated at matrix adhesions, the connection between cells and matrix. However, in various fibrous tissue pathologies (e.g. atherosclerosis, cardiomyopathy, tendon overload), a progressive increase in matrix disorganization is observed. In search of the underlying cause of this matrix disorganization, this proposal aims to determine how mechanoresponsive matrix adhesion proteins react to mechanical perturbations and impact matrix remodeling in healthy and diseased tissue. In a multidisciplinary approach, novel 3D model systems will be used to engineer micro-tissues subjected to mechanical perturbations. Real-time imaging will expose matrix adhesion functioning upon imbalance between endogenous and exogenous tension. The response of mechanosensitive matrix adhesion proteins in healthy and diseased tissues will be quantified upon cyclic stretching, and its impact on matrix remodeling. These results will unravel the underlying cause for tissue remodeling associated with fibrous tissue pathology, to ultimately provide a treatment strategy. The proposal aims at bridging the classical 2D cell research and in vivo studies. Both lack the possibility to study cellular processes at the molecular, cell and tissue level in a native-like environment, whereby tissues are exposed to physiologically relevant mechanical and biochemical loading. Bridging this gap by adopting this genuinely new approach will therefore boost European excellence and competitiveness.'

Altri progetti dello stesso programma (FP7-PEOPLE)

CG-DS MORPHOSYNTAX (2012)

"The Development of Cypriot Greek in Individuals with Down Syndrome: Their Morphosyntactic profile, and the effects of Phonetics and Phonology"

Read More  

AMD BIOMARKERS (2009)

Biomarkers in age-related macular degeneration

Read More  

MMRTSB (2010)

Matrix Models Recursions in Topological Strings and Beyond

Read More