EDIT

Evolution of Dust in Turbulent Protoplanetary Disks

 Coordinatore QUEEN MARY UNIVERSITY OF LONDON 

 Organization address address: 327 MILE END ROAD
city: LONDON
postcode: E1 4NS

contact info
Titolo: Prof.
Nome: Richard
Cognome: Nelson
Email: send email
Telefono: +44 2078823460

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 299˙558 €
 EC contributo 299˙558 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2015
 Periodo (anno-mese-giorno) 2015-03-02   -   2017-03-01

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    QUEEN MARY UNIVERSITY OF LONDON

 Organization address address: 327 MILE END ROAD
city: LONDON
postcode: E1 4NS

contact info
Titolo: Prof.
Nome: Richard
Cognome: Nelson
Email: send email
Telefono: +44 2078823460

UK (LONDON) coordinator 299˙558.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

model    realistic    dust    particles    turbulent    planetary    medium    magneto    grains    aggregates    planets    planet    gas    life    disks    ppds    evolution    interstellar    origin    dynamical   

 Obiettivo del progetto (Objective)

'Protoplanetary disks (PPDs) are the birthplace of planets like our Earth. In recent years hundreds of planetary systems have been detected, where some planets appear to be in the habitable zone and show best conditions to retain water, a prerequisite for life. So far the formation of planets and planetary systems is not totally understood. It is known that planet formation takes place in PPDs and that dust particles are the basic modules for planet construction. With the growth of dust grains, which have their origin in the interstellar medium, planet formation starts. To study these first steps of dust growth, which are closely coupled to the dynamics in the disk, is therefore of relevance to understanding planet formation and the origin of life. Studying the dynamical effects of dust in PPDs is so far based on simple dust models, which fail in many aspects to explain observations and planet formation. The need to include a realistic dust model is expressed in many studies. In collaboration with researchers at Queen Mary University, I have developed a science program which together will allow us to address the key questions of the influence of the dust properties on the spatial distribution, the dust evolution and on the planet formation processes in turbulent PPDs. In the interstellar medium, single dust grains are of core-mantle composition which coagulate into aggregates in dense regions. Implemented in PPDs, these aggregates undergo evolutionary processes which are influenced by turbulence in the disks. In PPDs, ionised gas is magneto-hydrodynamic turbulent due to magneto-rotational instabilities. The gas drag affects the dynamical behaviour of dust which is strongly dependent on the grain properties. The results of my model calculations which consider realistic aggregate dust particles in a realistic PPD environment are anticipated to be key for understanding the dust evolution and the early processes of planet formation.'

Altri progetti dello stesso programma (FP7-PEOPLE)

TWILIGHTZONE (2009)

Into the twillight zone: testing jet launching and collimation engines with near-infrared and (sub-)mm interferometry

Read More  

MICROGLIA-EPILEPSY (2014)

Microglia phenotype in temporal lobe epilepsy

Read More  

ENTORHINAL CIRCUITS (2009)

Spatial representation in the entorhinal neural circuit

Read More