RAS:EFFECTORS

RAS superfamily and the interactions with their effectors: functional specificity

 Coordinatore FUNDACION CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III 

 Organization address address: CALLE MELCHOR FERNANDEZ ALMAGRO 3
city: MADRID
postcode: 28029

contact info
Titolo: Prof.
Nome: Alfonso
Cognome: Valencia Herrera
Email: send email
Telefono: + (34) 917 328 000
Fax: + (34) 912 246 980

 Nazionalità Coordinatore Spain [ES]
 Totale costo 30˙000 €
 EC contributo 30˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-2-2-ERG
 Funding Scheme MC-ERG
 Anno di inizio 2007
 Periodo (anno-mese-giorno) 2007-09-01   -   2009-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FUNDACION CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III

 Organization address address: CALLE MELCHOR FERNANDEZ ALMAGRO 3
city: MADRID
postcode: 28029

contact info
Titolo: Prof.
Nome: Alfonso
Cognome: Valencia Herrera
Email: send email
Telefono: + (34) 917 328 000
Fax: + (34) 912 246 980

ES (MADRID) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

structure    binding    effectors    ras    unbound    interaction    proteins    complexes    forms    dynamics    effector    molecular    specificity   

 Obiettivo del progetto (Objective)

'Ras genes code for small GTPases that act as GDP/GTP-regulated molecular switches. This exchange induces a conformational change that allows them to interact with their downstream effectors, and thus participate as central control elements in signal transduction. Mutated forms of the Ras oncoprotein are found in more than 30% of all human cancers, justifying the extensive research on them. Ras effectors have convergently developed a common subdomain in their unrelated overall structure for their interaction with Ras. Although detailed knowledge about the thermodynamics and dynamics of the interaction with Ras has accumulated, the molecular mechanism at atomic detail of effector activation and thus specificity is still elusive. Crystallographic, NMR, and other spectroscopic studies show that the flexibility of their so-called “switch regions” majorly contributes to the adaptability of the Ras proteins to their various partners, including disorder-to-order transitions upon binding to their partners, and “structural polymorphism” in their different complexes and in the unbound forms. This incorporates another degree of difficulty on the understanding of the Ras:effector association. Although some studies have been previously carried out in order to rationalize the specificity of the Ras proteins towards their different effectors, they have been based only in the availability of Ras:effector crystal structures and taking a rather static point of view. In this work we intend to extend this to a large-scale bioinformatics and computational study, including driven-docking of Ras proteins and their effectors for which no complex structure is available but biological data supports complex formation. In a further step, Molecular Dynamics simulations both on the unbound partners and on their complexes will yield information accounting both for the binding affinity and for the intrinsic plasticity crucial in the recognition and regulation of Ras pathways'

Altri progetti dello stesso programma (FP7-PEOPLE)

HKMTIS (2013)

Computer-aided Design and synthesis of inhibitors of EED-EZH2 interaction as a novel approach for anticancer therapy

Read More  

THE COSMIC SOUL (2010)

The Cosmic Soul: Renaissance Humanism and Natural Philosophy

Read More  

AIRGAL (2012)

Physiological function and potential therapeutic utility of the neuropeptide galanin in airway inflammation

Read More