DYNRIGDIOPHGEOM

"Dynamics of Large Group Actions, Rigidity, and Diophantine Geometry"

 Coordinatore UNIVERSITY OF BRISTOL 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 629˙999 €
 EC contributo 629˙999 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-StG
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-02-01   -   2016-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL

 Organization address address: TYNDALL AVENUE SENATE HOUSE
city: BRISTOL
postcode: BS8 1TH

contact info
Titolo: Dr.
Nome: Oleksandr
Cognome: Gorodnyk
Email: send email
Telefono: +44 (0)117 331-5247
Fax: +44 (0)117 331-5264

UK (BRISTOL) hostInstitution 629˙999.80
2    UNIVERSITY OF BRISTOL

 Organization address address: TYNDALL AVENUE SENATE HOUSE
city: BRISTOL
postcode: BS8 1TH

contact info
Titolo: Mrs.
Nome: Maria
Cognome: Davies
Email: send email
Telefono: +44 117 331 7352
Fax: +44 117 925 0900

UK (BRISTOL) hostInstitution 629˙999.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

orbits    homogeneous    conjecture    rigidity    theory    plan    points    questions    generalisation    prove    approximation    algebraic    actions    multiple    of    problem    estimates    polynomial    diophantine    groups    automorphic    varieties    recurrence   

 Obiettivo del progetto (Objective)

'In our project we address several fundamental questions regarding ergodic-theoretical properties of actions of large groups. The problems that we plan to tackle are not only of central importance in the abstract theory of dynamical systems, but they also lead to solutions of a number of open questions in Diophantine geometry such as the Batyrev--Manin and Peyre conjectures on the asymptotics and the distribution of rational points on algebraic varieties, a generalisation of the Oppenheim conjecture on distribution of values of polynomial functions, a generalisation of Khinchin and Dirichlet theorems on Diophantine approximation in the setting of homogeneous varieties, and estimates on the number of integral points (with almost prime coordinates satisfying polynomial and congruence equations. The proposed research is expected to imply profound connections between diverse areas of mathematics simultaneously enriching each of them. For instance, we expect to establish a precise relation between the generalised Ramanujan conjecture in the theory of automorphic forms and the order of Diophantine approximation on algebraic varieties. We also plan to use our results on counting lattice points to derive estimates on multiplicities of automorphic representations and prove results in direction of Sarnak's density hypothesis. We investigate the problem of distribution of orbits, raised by Arnold and Krylov in sixties, the problem of multiple recurrence, pioneered by Furstenberg in seventies, and the problem of rigidity of group actions, formulated by Zimmer in eighties. We plan to compute the asymptotic distribution of orbits for actions on general homogeneous spaces, to establish multiple recurrence for large classes of actions of nonamenable groups, to prove isomorphism and factor rigidity of homogeneous actions and rigidity of actions under perturbations.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

COUNTING CONJECTURES (2012)

Counting conjectures and characters of almost simple groups

Read More  

DMEA (2013)

The Dynamics of Migration and Economic Adjustment

Read More  

NANOMOL (2011)

"From Nano Test Tube to Nano Reactor: Visualisation, Manipulation and Synthesis of Molecules at Nanoscale"

Read More