Opendata, web and dolomites

ComBIOsites SIGNED

Reversibly photocrosslinked BIO-based composites with barrier properties from industrial by-products

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ComBIOsites project word cloud

Explore the words cloud of the ComBIOsites project. It provides you a very rough idea of what is the project "ComBIOsites" about.

sustainable    promotion    cellulose    environments    actions    hurd    filler    matrix    convenient    prepolymers    performances    uncured    curing    prepolymer    issued    viscosity    requested    goals    microfibrillated    composite    appropriate    plan    thermoplastics    natural    combination    economy    abundant    environmentally    industrial    group    packaging    composites    obtain    raw    society    combined    barrier    prevents    potentially    hydrophilicity    renewable    photocrosslinkable    efficient    material    materials    forms    gas    water    recyclable    combine    mechanical    room    principles    hinders    crosslinked    biodegradability    polymeric    life    resistance    films    sourcing    photocrosslinked    plus    aligned    fulfil    bio    environmental    sources    recyclability    mfc    solvent    matrices    free    wavelength    dismantling    green    humid    photopolymerization    innovative    polymers    form    irradiation    hemp    circular    excellent    mixing    combiosites    primary    temperature    biopolymer    guarantee    photocrosslinking    biodegradable    decortication    final    resource    reversibly    reversible    functionalized   

Project "ComBIOsites" data sheet

The following table provides information about the project.

Coordinator
POLITECNICO DI TORINO 

Organization address
address: CORSO DUCA DEGLI ABRUZZI 24
city: TORINO
postcode: 10129
website: www.polito.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 180˙277 €
 EC max contribution 180˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-08-01   to  2020-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    POLITECNICO DI TORINO IT (TORINO) coordinator 180˙277.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

ComBIOsites aims at developing recyclable composite materials for packaging, using (i) raw materials issued from bio-based industrial by-products, according to the principles of circular economy, (ii) environmentally friendly processes, such as photopolymerization. This project is fully aligned with the European primary goals for the promotion of a “green” society, with a sustainable and resource efficient economy, by key actions such as the development of new and improved materials with reduced environmental impact, from sourcing and processing to end of life. Cellulose is an abundant, renewable and sustainable biopolymer, plus it is biodegradable. Microfibrillated cellulose (MFC), obtained with top-down approaches from cellulose sources, forms excellent gas barrier films ; however, their high hydrophilicity prevents their use in highly humid environments. It is therefore convenient to combine MFC with polymers in the form of composites. Crosslinked matrices guarantee high mechanical performances and water and solvent resistance. The uncured prepolymers can have very low viscosity, which allows for solvent-free mixing at room temperature. However curing often hinders recyclability. Reversible photocrosslinking of bio-based prepolymers, combined with MFC to obtain recyclable composites is innovative. To fulfil the final goal of the project, I will use MFC obtained from hemp hurd, a low cost by-product of industrial hemp decortication process, and a bio-based prepolymer, functionalized with a reversibly photocrosslinkable group, able to ensure the curing of the polymeric matrix upon irradiation at a given wavelength, and to allow its dismantling upon irradiation at a different wavelength. Thus, through appropriate matrix-filler combination and processing, I plan to obtain a reversibly photocrosslinked composite material having the performances requested for packaging, the recyclability of thermoplastics and potentially the biodegradability of natural polymers.

 Publications

year authors and title journal last update
List of publications.
2019 DALLE VACCHE, Sara; Capannelli, Jerome; Vitale, Alessandra; Bongiovanni, ROBERTA MARIA
Photocuring of epoxidized cardanol with microfibrillated cellulose for biobased composites
published pages: , ISSN: , DOI:
2020-04-15
2019 Sara Dalle Vacche, Alessandra Vitale, Roberta Bongiovanni
Photocuring of Epoxidized Cardanol for Biobased Composites with Microfibrillated Cellulose
published pages: 3858, ISSN: 1420-3049, DOI: 10.3390/molecules24213858
Molecules 24/21 2020-03-11

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COMBIOSITES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COMBIOSITES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

SpaTime_AnTB (2020)

Single-cell spatiotemporal analysis of Mycobacterium tuberculosis responses to antibiotics within host microenvironments

Read More  

GrowthDevStability (2020)

Characterization of the developmental mechanisms ensuring a robust symmetrical growth in the bilateral model organism Drosophila melanogaster

Read More