PROMETEO

Processing of Mesoscopic Time-pulsed Entangled Optical fields

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Ms.
Nome: Michèle
Cognome: Saumon
Email: send email
Telefono: +33 1 69 82 30 30
Fax: +33 1 69 82 33 33

 Nazionalità Coordinatore France [FR]
 Totale costo 0 €
 EC contributo 165˙444 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-IEF-2008
 Funding Scheme MC-IEF
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-09-15   -   2011-09-14

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Ms.
Nome: Michèle
Cognome: Saumon
Email: send email
Telefono: +33 1 69 82 30 30
Fax: +33 1 69 82 33 33

FR (PARIS) coordinator 165˙444.55

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

qubits    light    computers    photon    nonclassical    mode    generation    quantum    accuracy    cat    generating    regime    single    optical    manipulating   

 Obiettivo del progetto (Objective)

'Quantum physics is promising to start a revolution in the way we conceive the treatment of information. Future quantum computers will be able to solve complex problems for which an efficient solution is now difficult to implement. Their construction will require an unprecedent level of accuracy in manipulating quantum systems; quantum properties of light are appealing for this project, both at a “microscopic” regime, adopting single photons, and at a “mesoscopic” regime, employing the quadrature components. It has been proposed that “cat states” of light, i.e. a superposition of almost orthogonal coherent states, can encode qubits; this architecture requires the least overhead resources for fault tolerance among all the proposed optical quantum computation schemes. A key requirement is the ability of generating highly nonclassical states, whose quasi-probability function can assume negative values; earlier demonstrations have shown that such states can be generated by manipulating one- and two-mode squeezed states with a merging of both continuous variable and single photon experimental techniques. This project is devoted to the maturation of this approach, by generating two-mode entanglement of cat states, an essential resource for building quantum gates. For this purpose, we aim to improve the technology allowing the generation of number states and cat states. First, we will achieve a high level of squeezing, in order to manipulate optical fields with a larger degree of nonclassical correlations. Then, we will produce multi-qubits by using multiple squeezers. Finally, we will improve the single photon detections by using photon number resolving detectors. We expect that these innovations will improve the accuracy of state manipulation: the assessment of the usefulness of the novel states will be carried out, The outcomes of the project will be relevant to assess the practical feasibility of cat state quantum computing.'

Introduzione (Teaser)

EU-funded scientists explored the generation of complex quantum states of light for application to future quantum computers.

Altri progetti dello stesso programma (FP7-PEOPLE)

POLAREXPRESS (2014)

TEMPERATURE DRIVES EVOLUTION: IN SEARCH OF GENE EXPRESSION DIFFERENCES BETWEEN EURYTHERM AND POLAR STENOTHERM FISHES

Read More  

DIGITAL DUETS (2015)

DIGITAL Devices for mUltimodal Expression Through vocal Synthesis

Read More  

NANOFLUIDIC-SMFD (2014)

Nanofluidic devices for high-throughput single-molecule-fluorescence detection

Read More