LATQCD-CHIPT

Probing Chiral Perturbation Theory from realistic two-flavour Lattice QCD simulations

 Coordinatore EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 

 Organization address address: ROUTE DE MEYRIN CERN
city: GENEVA 23
postcode: 1211

contact info
Titolo: Mr.
Nome: Seamus
Cognome: Hegarty
Email: send email
Telefono: +41 22 767 27 55
Fax: +41 22 766 88 41

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 0 €
 EC contributo 137˙449 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-IEF-2008
 Funding Scheme MC-IEF
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-03-01   -   2010-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

 Organization address address: ROUTE DE MEYRIN CERN
city: GENEVA 23
postcode: 1211

contact info
Titolo: Mr.
Nome: Seamus
Cognome: Hegarty
Email: send email
Telefono: +41 22 767 27 55
Fax: +41 22 766 88 41

CH (GENEVA 23) coordinator 137˙449.77

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

pi    physical    wilson    masses    light    perturbation    pion    chiral    qcd    hmc    carlo    quark    modes    hadron    convergence    modification    theory    algorithm    monte    scattering    spectrum   

 Obiettivo del progetto (Objective)

'Research objectives and content: we propose to apply recently developed non-perturbative techniques for the simulation of two-flavour QCD with sea quark masses at physical values in order to investigate the convergence properties of Chiral Perturbation Theory (ChiPT) in pi-pi scattering and other light-quark physics quantities. Our approach is based on the Wilson formulation of the fermionic QCD action and an original modification of the Domain Decomposition Hybrid Monte Carlo (DD-HMC) algorithm. Target observables are: pi-pi scattering lenghts, pion mass, pion decay constant, other channels of the light-hadron spectrum. As a result, we expect to find conclusive quantitative information concerning the convergence radius of the chiral expansion and to consequently improve the understanding of the sponaneous breaking of chiral symmetry. Methodology: the main obstacle to simulate light-quarks at physical masses is represented by instability and non-ergodicity phenomena in the HMC, related to the structure of the low-end of the Wilson-Dirac spectrum. We propose to adopt a modification of the algorithm where the low-modes are separated from the bulk of the modes and included in a reweighting factor. Training: the candidate would like to acquire and deepen technical skills and knowledge in the areas of : a) Chiral Perturbation Theory; b) phenomenology of the light hadron interactions; c) Monte Carlo simulations of lattice QCD; d) Parallel computing.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SIPM IN-DEPTH (2013)

Development of novel analytical and experimental approaches for an in-depth characterization and optimization of Silicon Photomultipliers

Read More  

NANOTUBE ENERGY (2010)

Carbon nanotube structures as innovative electrode materials for more efficient energy storage devices

Read More  

EOR OBSERVABILITY (0)

"Character and Observational Signatures of the Cosmic Dark Ages, the First Stars and the Epoch of Reionization"

Read More