QUANTUMDOTIMPRINT

Quantum dots having molecularly imprinted nanoshell for recognition of antibiotics

 Coordinatore UNIVERSITAET POTSDAM 

 Organization address address: AM NEUEN PALAIS 10
city: POTSDAM
postcode: 14469

contact info
Titolo: Dr.
Nome: Regina
Cognome: Gerber
Email: send email
Telefono: 493320000000
Fax: 493320000000

 Nazionalità Coordinatore Germany [DE]
 Totale costo 45˙000 €
 EC contributo 45˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-RG
 Funding Scheme MC-ERG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-10-01   -   2012-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAET POTSDAM

 Organization address address: AM NEUEN PALAIS 10
city: POTSDAM
postcode: 14469

contact info
Titolo: Dr.
Nome: Regina
Cognome: Gerber
Email: send email
Telefono: 493320000000
Fax: 493320000000

DE (POTSDAM) coordinator 45˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

selectively    medical    shell    selectivity    surface    mip    qds    stability    functionalised    analyte    sensitivity    molecules    dots    polymers    investigations    quantum   

 Obiettivo del progetto (Objective)

'Molecular imprinting of polymers (MIP) is a method to obtain highly functionalised polymers containing binding sites that are able to selectively recognize analyte molecules. In general, this method is based on co-polymerisation of functional monomers around the analyte. Consequently, a cavity formed in the polymer is complementary to the analyte not only in size and shape, but also by the electron density distribution. Thus the MIP is capable of selectively detecting the analyte in surrounding environment. Surface functionalised quantum dots can be applied in a variety of biological investigations, in which traditionally used fluorescent organic molecules fail due to lack of long-term stability and simultaneous detection of multiple signals. The ability to make QDs water soluble and target them towards specific biomolecules either by surface functionalisation or polymeric shell implementation leads to their promising applications in cellular labelling, deep-tissue imaging, immunoassay as well as efficient fluorescence resonance energy transfer donors or acceptors. The main objective of the project is the preparation of quantum dots having biocompatible MIP shell capable of selectively recognizing antibiotics. By combining high selectivity of the MIP and sensitivity of QDs with application of this hybrid material to medical research the project exhibits high inter- and multidisciplinary level as significantly relevant for nowadays sciences. The nanosensors will be characterized in terms of their long-term stability, sensitivity, selectivity, response time, and will subsequently be evaluated for analyte monitoring in biotechnology and medical research. The investigations on the new sensor materials will allow for the study of recognition reactions at the nanometer scale and foster the development of highly defined self-organizing nanostructures.'

Altri progetti dello stesso programma (FP7-PEOPLE)

A-SPERONI (2014)

"Sperone Speroni and his Legacy (1508-1588). Literature, Philosophy and the Vernacular"

Read More  

AY-WB EFFECTORS (2011)

A characterization of the effectors of a plant pathogen

Read More  

PRANA (2013)

Protein-RNA networks ALS

Read More