MICROFLUCHIP

Microfluidic Chip

 Coordinatore TALLINNA TEHNIKAULIKOOL 

 Organization address address: Ehitajate tee 5
city: TALLINN
postcode: 19086

contact info
Titolo: Ms.
Nome: Liina
Cognome: Kotkas
Email: send email
Telefono: 3726203531
Fax: 3726202020

 Nazionalità Coordinatore Estonia [EE]
 Totale costo 37˙500 €
 EC contributo 37˙500 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-RG
 Funding Scheme MC-ERG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-04-01   -   2012-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TALLINNA TEHNIKAULIKOOL

 Organization address address: Ehitajate tee 5
city: TALLINN
postcode: 19086

contact info
Titolo: Ms.
Nome: Liina
Cognome: Kotkas
Email: send email
Telefono: 3726203531
Fax: 3726202020

EE (TALLINN) coordinator 37˙500.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

droplets    bioreactors    chip    serially    microfluidic    measuring    electronics    cells    microfluchip    droplet    separation   

 Obiettivo del progetto (Objective)

'Microfluidic devices can integrate laboratory functions such as biomedical analysis on a single chip. They produce a huge market for the upcoming decades, as they seem to compete, rewardingly, benchtop instruments. Microfluidic devices became innovative as an increasing number of applications use microfluidic reactors for cultivating cells. Microfluidic devices might work with segmented flows where cells might be cultivated within miniaturized droplets, called droplet-bioreactors. MicroFluChip project targets the fabrication of a microfluidic chip capable of measuring electrically blood cells within droplet-bioreactors. For assessing the passive properties of the cells we intend to employ bioimpedance spectroscopy, which is a well-established method in biomedicine for measuring dielectric response of cells. Digital pulses with predefined spectral properties will be employed in this work. Integrated front-end electronics will condition the signals for performing online analysis with an analyzer or a signal processor. A network of microchannels, junctions and microelectrodes will direct the droplet-bioreactors, serially, into outlets for separation. Immiscible oil will be used as separation medium in order to prevent the droplets from merging and also to isolate their content from contamination. No surfactants are required for stabilizing the droplets. The microfluidic chip will be capable of measuring up to ten droplets per second serially, which enables high throughput processing for this class of devices. Our design allows oxygen and carbon dioxide to diffuse through the chip walls, which is essential for the metabolism of the cells. MicroFluChip is a highly multidisciplinary project and combines microfluidics, electronics and material technology. MicroFluChip project ensures the transfer of knowledge to Tallinn Technical University and offers the potential of introducing this technology into the local industry.'

Altri progetti dello stesso programma (FP7-PEOPLE)

QTOPDEV (2014)

Topological Quantum Devices

Read More  

PICOSHEEP (2011)

CULTURAL CHANGE AND HUSBANDRY DEVELOPMENT IN EUROPE: ZOOARCHAEOLOGICAL EVIDENCE FROM THE IRON AGE – ROMAN TRANSITION IN IBERIA AND BRITAIN

Read More  

TCDOFT (2013)

The Cultural Diffusion of the Fertility Transition: Internal Migrations in Nineteenth Century France

Read More