MEDEA

Advanced Methodologies for the Determination of the Lability of Trace Metals and Their Application to Contaminated Soils

 Coordinatore NATURAL ENVIRONMENT RESEARCH COUNCIL 

 Organization address address: Polaris House, North Star Avenue
city: SWINDON WILTSHIRE
postcode: SN2 1EU

contact info
Titolo: Ms.
Nome: Lynne
Cognome: Riley
Email: send email
Telefono: +44 (0)115 936 3202
Fax: +44 (0)115 936 3370

 Nazionalità Coordinatore United Kingdom [UK]
 Sito del progetto http://www.gold.ac.uk/medea/
 Totale costo 172˙740 €
 EC contributo 172˙740 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-09-01   -   2012-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    NATURAL ENVIRONMENT RESEARCH COUNCIL

 Organization address address: Polaris House, North Star Avenue
city: SWINDON WILTSHIRE
postcode: SN2 1EU

contact info
Titolo: Ms.
Nome: Lynne
Cognome: Riley
Email: send email
Telefono: +44 (0)115 936 3202
Fax: +44 (0)115 936 3370

UK (SWINDON WILTSHIRE) coordinator 172˙740.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

mining    accurately    id    industrial    pore    risk    metal    water    redox    lability    heavy    significant    soil    aqueous    proportion    western    mineral    solid    metals    contaminated    scenarios    model    forms    environment   

 Obiettivo del progetto (Objective)

'Much of Western Europe has inherited soil contaminated with heavy metals from past mining, mineral processing and industrial activities. When performing risk assessment for eco-toxicological, human health or ground water vulnerability studies the major issue is not the total concentration of the heavy metal but its labile fraction i.e. the proportion of the metal transferable to an aqueous phase in ionic form. This may vary widely as a function of the solid forms in which the metal is hosted, the pH and redox conditions in pore waters that control the lability, or the occurrence of other species within the aqueous phase which may provide competitive sorption or preferential transport modes. Given the toxicity of a number of heavy metals even at low contents, accurate methods are required to properly monitor them in the environment and gain further insight in their behaviour. Simple extraction schemes are the most common procedure to assess natural availability of heavy metals in different scenarios. However, it has been demonstrated that these are unable to measure the true proportion of metal that may be exchangeable and contribute to lability, which may lead to unreliable risk assessments. This proposal seeks to accurately study the lability of heavy metals in several polluted scenarios by applying one of the most advanced methodologies for this purpose, namely ‘isotope dilution’ (ID). This technique reflects the pool of reactive metal in the soil and can be used to model solid-solution equilibria and the fixation of metal ions into less available forms. ID method has been successfully implemented for Cd, Zn and As, while a method for environmentally significant elements such as Fe, Sb and Se -particularly susceptible to redox conditions- remains to be developed. Data will be combined with soil pore water analyses to geochemically model scenarios and determine the role of changing redox conditions in the releases of heavy metals to the environment.'

Introduzione (Teaser)

Significant areas of soil in western Europe are contaminated with heavy metals from previous mining, mineral processing and industrial activities. Scientists have exploited advanced technology to more accurately assess risks.

Altri progetti dello stesso programma (FP7-PEOPLE)

LABCAXPCI (2013)

Laboratory- Based Coded Aperture X-ray Phase-Contrast Imaging

Read More  

GEOMECH (2011)

Geometric Mechanics

Read More  

ECOFUN (2009)

Analysis of biodiversity changes on structural and functional properties of marine ecosystems under cumulative human stressors

Read More