ABACUS

Ab-initio adiabatic-connection curves for density-functional analysis and construction

 Coordinatore UNIVERSITETET I OSLO 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Norway [NO]
 Totale costo 2˙017˙932 €
 EC contributo 2˙017˙932 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-AdG_20100224
 Funding Scheme ERC-AG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-03-01   -   2016-02-29

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITETET I OSLO

 Organization address address: Problemveien 5-7
city: OSLO
postcode: 313

contact info
Titolo: Dr.
Nome: Ingse
Cognome: Noremsaune
Email: send email
Telefono: +47 228 55329
Fax: +47 228 54367

NO (OSLO) hostInstitution 2˙017˙932.00
2    UNIVERSITETET I OSLO

 Organization address address: Problemveien 5-7
city: OSLO
postcode: 313

contact info
Titolo: Prof.
Nome: Trygve Ulf
Cognome: Helgaker
Email: send email
Telefono: +47 228 55428
Fax: +47 228 55441

NO (OSLO) hostInstitution 2˙017˙932.00

Mappa

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

experimental    fitting    density    functionals    kohn    connection    correlation    exchange    construction    electronic    function    approximate    adiabatic    refinable    systematically    lieb    curves    wave    exact    calculations    sham    functional    mdash   

 Obiettivo del progetto (Objective)

'Quantum chemistry provides two approaches to molecular electronic-structure calculations: the systematically refinable but expensive many-body wave-function methods and the inexpensive but not systematically refinable Kohn Sham method of density-functional theory (DFT). The accuracy of Kohn Sham calculations is determined by the quality of the exchange correlation functional, from which the effects of exchange and correlation among the electrons are extracted using the density rather than the wave function. However, the exact exchange correlation functional is unknown—instead, many approximate forms have been developed, by fitting to experimental data or by satisfying exact relations. Here, a new approach to density-functional analysis and construction is proposed: the Lieb variation principle, usually regarded as conceptually important but impracticable. By invoking the Lieb principle, it becomes possible to approach the development of approximate functionals in a novel manner, being directly guided by the behaviour of exact functional, accurately calculated for a wide variety of chemical systems. In particular, this principle will be used to calculate ab-initio adiabatic connection curves, studying the exchange correlation functional for a fixed density as the electronic interactions are turned on from zero to one. Pilot calculations have indicated the feasibility of this approach in simple cases—here, a comprehensive set of adiabatic-connection curves will be generated and utilized for calibration, construction, and analysis of density functionals, the objective being to produce improved functionals for Kohn Sham calculations by modelling or fitting such curves. The ABACUS approach will be particularly important in cases where little experimental information is available—for example, for understanding and modelling the behaviour of the exchange correlation functional in electromagnetic fields.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

BIHSNAM (2012)

Bio-inspired Hierarchical Super Nanomaterials

Read More  

MAMMALIANDEVELOPMENT (2008)

A systems-level understanding of the novel principle in early mammalian development

Read More  

RIFIFI (2010)

Risk Incentives in Financial Institutions and Financial Instability

Read More